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ABSTRACT

Commonly used methods for calculating periodic steady
state, such as forward integration and shooting, may fail
for highly nonlinear circuits with multiple solutions and/or
multiple time scales. Homotopy continuation methods, be-
cause of their potentially large or global regions of conver-
gence, and suitability for finding multiple solutions, have
been applied to the calculation of periodic steady state for
such systems.

This paper applies real and complex multi-parameter ho-
motopy to finding periodic solutions of power electronic
circuits. We show that multi-parameter homotopy meth-
ods can avoid period-doubling and cyclic fold bifurcations
along solution paths, and find all stable and unstable peri-
odic solutions along folding or period-doubling paths. We
distinguish between circuit-direct and formulation-indirect
homotopy, and show that the latter (with two real parame-
ters) can avoid period-doubling bifurcations, while the for-
mer cannot.

1 INTRODUCTION

A circuit is in a periodic steady state if its state z(t) =
z(t+T) for all t > t'. In this paper we focus on the calcula-
tion of periodic steady states, both stable and unstable, of
circuits with periodically varying sources and/or switches,
a problem of importance in power electronics, control, and
communication systems [1].

Commonly used methods for calculating a periodic steady
state include forward integration for asymptotically stable
solutions, and locally convergent iterative methods such as
shooting, finite differences (time domain), and harmonic
balance (frequency domain) [1, 2, 3, 4, 5]. However, these
techniques may either fail or become impractical for highly
nonlinear circuits with characteristics such as multiple so-
lutions and/or multiple time scales, and are not easily
adapted to finding multiple solutions. Examples of power
electronic circuits with multiple solutions include the feed-
back controlled buck converter [7] and ferromagnetic cir-
cuits [8], to be discussed later in the paper.

Recently, homotopy continuation methods, with their po-
tentially large or global regions of convergence, have been
applied to the calculation of periodic solutions of circuits
[6]. The idea behind a continuation method is to embed
a parameter in the circuit’s nonlinear algebraic-differential
equations, or in the algebraic formulation associated with
a shooting, finite difference, or harmonic balance method.

*This work was supported by SRC contract 93-DC-324, and
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Setting the parameter to zero reduces the problem to a sim-
ple one that can be solved easily, or whose periodic solution
is known. A periodic solution of the simple problem is the
starting point of a continuation path. The set of equations
is then continuously deformed into the originally-posed diffi-
cult problem. A solution to the difficult problem is obtained
by tracing the corresponding continuation path through so-
lution space.

Homotopy continuation methods have been applied to
the calculation of periodic steady state and DC operating
points of nonlinear circuits via natural maps such as source
and impedance stepping, and artificial convex combination
homotopy functions [11, 6]. Varying a circuit parameter
may result in qualitative changes in system trajectories of
the circuit, called bifurcations. Local dynamic bifurcations
of a periodic orbit include cyclic folds and period-doubling
bifurcations [10]. Local dynamic bifurcations of periodic
orbits can manifest themselves as folding and pitchfork-
bifurcating solution paths of algebraic homotopy continu-
ation formulations. Other potential problems include solu-
tions escaping to infinity, abbreviated paths, closely spaced
solution curves, and disjoint branches.

In this paper we apply the concept of real and complex
multi-parameter homotopy maps and methods, introduced
in [14] for finding DC operating points, to finding periodic
solutions of power electronic circuits. We explore their po-
tential for avoiding cyclic fold and period-doubling bifur-
cations along periodic-solution paths, and for finding all
solutions emanating from folding or period-doubling paths.
Especially of interest is the case where this potential de-
pends on whether the homotopy transformation is applied
directly to the circuit, or indirectly to the system of non-
linear algebraic equations derived from a finite difference
formulation.

We show that higher dimensional homotopy methods are
capable of avoiding bifurcation points and folds along so-
lution paths while tracing all emerging stable and unstable
periodic solutions, and thus offer a technique for finding
periodic steady states of power electronic circuits that is
far more robust than existing methods. We assume sim-
ple, isolated periodic solutions in a compact region of state
space.

2 MULTI-PARAMETER HOMOTOPY

A simple example of single parameter homotopy, a spe-
cial case of multi-parameter homotopy, is source stepping
combined with finite differences. In this case the homo-
topy transformation is the scaling of all independent sources
by a parameter A € R. The original periodically varying
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Figure 1: Periodic orbits sampled every T seconds, as a function of A: a) Cyclic fold bifurcations join multiple solutions. b)

Period-doubling cascades join multiple solutions.

state equations’ & = f(z,t) = f(z,t+T),f : R" x R —
R", describing the circuit are transformed into the system
2 = h(z,t,)), where h(z,t,1) = f(z,t), and the system
z = h(z,t,0) has a zero solution z(t) = 0.

The parameterized two-point boundary value problem
#(t, ) = h(z(t,X),1,X),2(0,A) = z(rT, A), (a periodic so-
lution with period rT, r€ Z%, is being sought) is posed as
a system of algebraic equations via a finite differences for-
mulation [1]. The system z = h(z,t,A) can be discretized
by the trapezoidal rule, for instance, into

=~

z(tg) 2(tk—1) + At/ 2[A(z(tk—1 ) tk—1, A) + R(2(tk), tk, N)]

for k = 1,2.1N (N points every T seconds). Then, to
constrain the solution to be periodic, we set z(t0) = z(trn),
and are left with a system of r N x n nonlinear algebraic
equations in rN x n + 1 unknowns written H(Zx,A) = 0.
The solution set of the equations H(Zx,A) = 0 consists of
curves. A homotopy algorithm traces a curve from A = 0 to
a circuit solution at A = 1, and possibly beyond to search
for additional solutions.

Since the solution curves produced by single parameter
homotopies like those above can have cyclic fold and period-
doubling bifurcation points, which can be problematic for
homotopy continuation methods, we study multi-parameter
homotopies in an effort to avoid these ‘bad’ points. We
are also able to take advantage of the presence of bifurca-
tions along solution paths to find any additional periodic
orbits they may serve to connect. Figure 1 illustrates how
local bifurcations serve to connect stable and unstable peri-
odic orbits, through cyclic-folding paths and forking period-
doubling cascades.

Real m-parameter versions of the homotopy functions
described earlier in the section may be obtained by em-
bedding a parameter vector A € R™ in the circuit, for
instance by scaling different sources independently. The
vector-parameterized boundary value problem :i(t,A) =
h(z(t,1),t,1),2(0,)) = z(rT, ), when posed as a system
of nonlinear equations H(Z5,A) = 0 via a finite differ-
ence formulation, has a solution set consisting of locally
m-dimensional solution surfaces, rather than curves. Simi-
larly, a complex parameter version results when A, the scal-
ing parameter, is made complex. In this case the solution
surface will be locally 2-dimensional, consisting of real and
imaginary solution components. The idea then is to try
and navigate these solution surfaces in such a way that lo-
cal bifurcation points are avoided, and all locally connected

1A state equation formulation is not necessary. The system
of algebraic differential circuit equations derived from modified
node analysis or some such method will work in all of the follow-
ing, with minor modifications.
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periodic orbits are found. With complex homotopy, paths
traced through parameter and solution space contain excur-
sions into complex parameter and solution space, while real
homotopies trace paths that remain in real space.

We refer to the above approach to obtaining a homotopy
function H, in which the time-invariant homotopy trans-
formation is applied directly to the circuit rather than to
the algebraic formulation of the boundary value problem, as
circuit-direct. Had we first formulated the boundary value
problem ¢ = f(z,t),z(0) = z(rT), as a system of alge-
braic equations F(X) = 0 via finite differences, and then
applied the homotopy transformation to the algebraic sys-
tem F(X) = 0 in order to obtain the homotopy function,
the approach would be termed formulation-indirect.

The next sections discuss the potential of real and com-
plex multi-parameter homotopy methods for avoiding cyclic
fold and period-doubling bifurcations of periodic orbits, and
finding all emerging stable and unstable periodic orbits
along bifurcating paths. The question of whether the fold
and bifurcation avoidance results of [14] apply to finding
periodic solutions, using circuit-direct and/or formulation-
indirect homotopy, is addressed.

3 AVOIDING CYCLIC FOLD BIFURCATIONS

At a cyclic fold bifurcation (CFB), two real periodic or-
bits, one stable and the other unstable, coalesce and then
‘dissapear’ as a parameter embedded in the circuit equa-
tions is varied monotonically. Power electronic circuits un-
dergoing natural continuation are prone to cyclic fold bi-
furcations along solution paths. For example, the ferro-
resonant circuit in Example 1 undergoes two cyclic fold bi-
furcations as E, the magnitude of the sinusoidal forcing
function, is varied from E = 0 volts to £ = 140 volts.

A typical mathematical characterization of a CFB in-
volves the Poincaré map P, of a periodic orbit #, and its
eigenvalues, called Floquet multipliers [10]. Conceptually,
a Poincaré map is obtained by placing an n — 1 dimensional
hypersurface ¥ in R" so that it transversally intersects the
periodic orbit £ exactly once (at p)), as shown in Fig-
ure 2a. The Poincaré map Py : U — ¥ sends points in the
neighborhood of px on I (¢ € U) to the hypersurface T for
a first return that matches the system flow. For a period-
ically forced system, this amounts to sampling the system
flow every T seconds.

Since the point py € £, is a fixed point of the map P
(p» = Pa(pa)), the eigenvalues of the linearization of Py at
Px, 0i € 0(DPr(ps)), reflect the stability of the fixed point
px and its corresponding periodic orbit , and determine
the occurence of a bifurcation. As long as no eigenvalue
is on the unit circle (|oi| # 1,Vi), the periodic orbit Z, is
hyperbolic and non-bifurcating. However, when |oi| = 1,
the periodic orbit undergoes some type of bifurcation.
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Figure 2: a) Poincaré map.
e) Resoved PDB fork in P}

A cyclic fold bifurcation corresponds to a single eigen-
value o; € o(DP,) passing through +1 transversally. At
the bifurcating parameter value, the matrices Dp Px(pa) — I
and Dy Px(p) drop and maintain rank, respectively, and the
solution curve of fixed points px folds, as shown in Fig-
ure 2b. We assume that once formulated as a parameterized
system of algebraic equations, the periodic-solution finding
problem will, for a fine enough discretization, have folding
solution paths mirroring any existing CFBs.

Homotopy methods capable of handling solution curves
with folds must be able to respond by reversing direction
along the parameter axis, a maneuver that can be inefficient
for arc length parameterized methods [12] because of the
small step sizes required. Switched parameter algorithms
[13], while faster than arc length methods, may miss sharp
turning points if the step size is not small enough, and can
exhibit cyclic behavior near switching points. We are inter-
ested in the potential of real and complex multi-parameter
homotopy, both circuit-direct and formultion-indirect, for
avoiding solution path folds corresponding to cyclic fold bi-
furcations of periodic orbits.

Since the topic of fold avoidance for multi-parameter ho-
motopy applied to calculating DC operating points was dis-
cussed in [14], we address the question of whether there is
any qualitative difference, either in real or complex space,
between the solution folds one finds in ordinary parameter-
ized systems of algebraic equations, and those that appear
in algebraic formulations of two-point boundary value prob-
lems as a circuit parameter is varied, reflecting cyclic fold
bifurcations. If not, results that apply to fold avoidance
in the DC problem [14] will apply to fold avoidance in the
periodic-solution finding problem, and there will be no dif-
ference between circuit-direct and formulation-indirect ho-
motopy. We demonstrate that the two are locally equiva-
lent.

To show this equivalence, we compare bifurcation nor-
mal forms and codimensions. The normal form, or sim-
plest, one dimensional representation of the Poincaré map
Tk+1 = Px(zx) in the neighborhood of a CFB, is zx41
Tk + T2 + A [10], which, for the fixed point zx41 = 74 = pa,
is identical to the normal form of the static, generic DC op-
erating point fold discussed in [14], H(z,A) = 22 + A = 0.
Both sources of folds are locally codimension one, mean-
ing that a single constraint plus transversality (an eigen-
value passing transversally through +1 for a CFB, and a
transversal loss of rank of the Jacobian D;H(z, ) for the
static bifurcation case) locally characterizes their presence.

(formulation-indirect).
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b) CFB fixed point fold. ¢} Complex CFB avoidance path for Example 2. d) PDB fork in P}.

Thus, local results and reasoning that apply to one apply
to the other, regardless of whether the homotopy function
is circuit-direct or formulation-indirect. We now restate a
local version of the results of [14] in the context of periodic
orbit tracing and present a circuit example.

Result 1: Real multi-parameter homotopy, applied ei-
ther to a circuit-direct or a formulation-indirect homo-
topy function, generally cannot avoid cyclic fold bifur-
cations by locally maneuvering around the parameter
value corresponding to the CFB.

Result 2: Complex parameter homotopy, applied either
to an analytic circuit-direct or formulation-indirect ho-
motopy function, can avoid cyclic fold bifurcations.
Generally, folds may be avoided by tracing a closed
curve in complex parameter space around the parame-
ter value corresponding to the CFB.

To briefly summarize the reasoning detailed in [14], Results
1 and 2 are based on codimension and normal form argu-
ments. Since folds are codimension one in real parameter
space, and codimension two in complex parameter space,
adding real parameters to a homotopy function cannot lead
to fold avoidance, but complexifying a parameter can lead
to fold avoidance. Examining the normal form of a fold,
H(z,A) = 2% + X = 0, reveals that tracing a full circle in
complex parameter space A = ee'?,# = 0 : 2r, around the
fold point A = 0 leads to a regular path from z = /€ (on the
manifold z = v/}) to £ = — /¢ (on the manifold z = —VA).
Because CFB’s can serve to connect periodic orbits of a
parameterized circuit, Result 2 implies that complex homo-
topy can be used to find all orbits connected by CFB’s via
regular paths.
Circuit Example 1: The ferroresonant circuit shown in
Figure 3a has state equations

(Rs + Rs)@n
(Rs + Rs)d;z

—q1/C1 + Rsg(d2) + es(t)
—Rsqi/c1 — RaRsg(92) + Rsea(t)

with nonlinear inductor characteristic i, = 9(¢2) = ag2 +
bg3, a sinusoidal forcing function ea(t) = FEcoswt, and
where ¢; is the charge across the capacitor and ¢, is the
inductor flux. For the state vector £ = (g1, ¢2), we refer
to the above state equations as £ = f(z,t). A circuit-
direct, real, single parameter homotopy function is ob-
tained by scaling the magnitude of the forcing function
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Figure 3: a) Ferroresonant circuit. b) Three periodic orbits at AE = 100V. c) Folding solution path. d) Real compone'nt ot
periodic orbit path vs. Real()). e) Imaginary component of periodic orbit path vs. Real(}) .

es(t) in f(z,t) by a real parameter A. The newly param-
eterized state equations z = h(z,t,A) are then formulated,
via finite differences with period 27/w, as a parameter-
ized algebraic system of equations H(Zx,A) = 0, where
Z» is the N-point discretized T-periodic solution zx(-) of
z2(t,A) = h(z(2,A),1,A); 2(0,A) = z(rT, A). The folding so-
lution path of H(Zx, A} = 0, corresponding to values of AE
at which the circuit has first one, (0 < E.y), then three, and
then one T-periodic solution [8], is represented in Figure 3c
for the circuit values Ry = 5082, Ry = 1092, C, = 1.69uF,
E=100V, (a,b)=(0.03,0.174) and N=40 sample points. The
three orbits at E=100V are illustrated in Figure 3b.

A complex parameter homotopy function is obtained
from the real homotopy function H(Zx,A) = 0 by mak-
ing the parameter, and thus the solution vector, complex
(A € C). Figures 3d,e show the smooth, fold-free complex
solution path (real and imaginary parts of the solution as
a function of the real part of A ) from the middle, unstable
periodic solution 22(-) to the outer, stable periodic solution
£3(-) at AE = 100 obtained by tracing a full circle in com-
plex parameter space around the CFB point, as shown in
Figure 2c. The middle, unstable periodic orbit z2(-) was ob-
tained in the same manner from Z;(-) by tracing a complex
solution curve around the fold point AE = 110V. Thus all
stable and unstable orbits joined by cyclic fold bifurcations
on a single branch, z;(-), z2(-), and 23(-), were found via
regular paths. &

4 AVOIDING PERIOD-DOUBLING
BIFURCATIONS

At a period-doubling bifurcation (PDB), the variation of a
circuit parameter causes a stable mT-periodic solution to
become unstable just as two stable 2mT-periodic solutions,
mT-shifted versions of each other, are created. In the above
description, T is the fundamental period of the periodic
forcing function in the circuit, and m is a positive integer.
Power electronic circuits undergoing natural continuation
are prone to period-doubling bifurcations [7, 8]. Figure 4a
shows a buck converter circuit from {7] that exhibits period
doubling behavior as the amplitude of the input voltage
( Vi) is varied from 15.0v to 40.0v. For V; < 25.0v the
circuit has a stable periodic orbit with period T, which then
bifurcates to two (identical in phase space, but shifted in

time) stable periodic orbits of period 2T at Vi =~ 28.0v.
At Vi = 32.0v the two 2T periodic orbits bifurcate to four
stable 4T periodic orbits, and so on, until the onset of a
chaotic looking waveform at V; = 40.0v.

As with the cyclic fold bifurcations discussed in Section 3,
Poincaré maps and their eigenvalues are used to character-
ize period doubling bifurcations. Given a Poincaré map P»
of a stable periodic orbit % of period mT with a fixed point
Px € £, the periodic orbit Z, undergoes a period-doubling
bifurcation if a single eigenvalue ¢; € (D, P\(p.)) passes
transversally through -1 (o; = —1,80:/8X # 0). As this
eigenvalue passes through the unit circle, the fixed point
p» reverses its stability, going from stable to unstable as
0, exits the unit circle. Simultaneously, the second return
map P} undergoes a fork bifurcation, in which the single
fixed point p, splits into three fixed points, pa, g, and
ra, with ra = Pa(ga), gx = Pa(ra) and px = Pi(pa), as
shown in Figure 2d. The fixed point p, is a point on the
now-unstable period-mT orbit £, while the emerging fixed
points rx and g are mT-separated points on the emerging
stable period-2mT orbit §.

Analogously, if the periodic solution finding problem is
posed as a system of algebraic equations, say via finite
differences or shooting over the fundamental period T, a
smooth well-conditioned solution path approximating %,
exists through a range of parameters including that at which
the circuit period doubles. The orbit becomes unstable,
but this is not reflected in a static bifurcation of the alge-
braic system. This is analogous to tracing the fixed point
pr = Pi(pa) as A is varied. However, if one traces the
period-T solution Z, of a finite differences or shooting for-
mulation over twice the fundamental period, 2T, then a fork
bifurcation occurs near the parameter value at which the
circuit geriod-doubles. This is like tracing the fixed point
pr = P{(px) as A is varied. We say ‘near’ rather than at
the PDB point because we assume that they only coincide
as h, the discretization increment, goes to zero.

A real, single parameter homotopy algorithm encounter-
ing a fork bifurcation point will either fail when the Ja-
cobian of the homotopy function drops rank (unlikely be-
cause of sampling and finite precision) or suffer from ill-
conditioning in the neighboring region and likely continue
along the center branch of the fork corresponding to the un-
stable period-mT solution. We discuss whether real and/or
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complex multi-parameter methods, either circuit-direct or
formulation-indirect, can avoid the fork bifurcations engen-
dered by period-doubling bifurcations, and, if so, whether
all stable and unstable emerging periodic solutions will be
accessible.

Since the topic of fork bifurcation avoidance for multi-
parameter homotopy applied to calculating DC operating
points was discussed in [14), we address the question of
whether there is any qualitative difference, either in real or
complex space, between the forks one finds in ordinary pa-
rameterized systems of algebraic equations, and those that
occur in algebraic formulations of two-point boundary value
problems as a circuit parameter is varied through a period-
doubling bifurcation. As will be shown, the answer is yes.
Thus, while the discussion and results in [14] on the topic
of fork bifurcation avoidance in real and complex space can
apply to the periodic solution finding problem when param-
eters are chosen in a formulation-indirect manner, they do
not apply when parameters are chosen circuit-direct.

The idea behind this distinction is that a circuit-direct
formulation inherits the bifurcation set characteristics of
the boundary-value constrained dynamical system ( px =
P3}(py) in this case), while a formulation-indirect homotopy
function may be chosen to have a bifurcation set that resem-
bles that of the static problem explored in [14]. Since these
bifurcation sets can have fundamentally different proper-
ties in the neighborhood of a given bifurcation, as they do
at a period-doubling engendered fork, bifurcation-avoidance
potential and methods are formulation dependent. A sum-
mary of results follows.

Result 3: Real 2-parameter homotopy, applied to a
formulation-indirect homotopy function (r7 = 2mT
in Section 2), can be used to avoid a PDB point and
trace the emerging stable period-2mT orbit. It cannot
be used to access the continuing unstable period-mT
orbit beyond the PDB point without passing through
a bifurcation.

Result 4: Real 2-parameter homotopy, applied to a
circuit-direct homotopy function (rT = 2mT), cannot
be used (via e-perturbations) to avoid a PDB point and
trace either the emerging stable period-2mT orbit or
the continuing (unstable) period-mT orbit.

Result 5: Complex parameter homotopy, either circuit-
direct or formulation-indirect (rT = 2mT), can be used
to avoid the PDB point and trace the continuing (un-
stable) period-mT orbit, if the homotopy function is
analytic.

We illustrate the difference between the bifurcation avoid-
ance potential of circuit-direct and formulation-indirenct
homotopy on the quadratic map zx41 = Pa(zk) = Azk(l -
zk), a simple dynamical system considered representative
of generic period-doubling phenomenon [8]. At A = 3, the
eigenvalue of the linearized map o = A(1 — 2zo) passes
through -1, causing the equilibrium point zo = 1 — 1/X
to period-double. This period-doubling shows up as a fork
bifurcation of an equilibrium point of the second return map
P2, which can be algebraically formulated as the two equa-
tions Azo(l — zo) ~ 1 = 0 and Az (1l — z1) — zo = O after
setting zo = z2.

We obtain a real, two parameter circuit-direct (map-
direct, in this case) homotopy function by first embedding
an extra parameter in the quadratic map to get zx41 =
Py, a, = Az — A2z2, and then setting 1o = 72 to get the
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equations hi(zo,z1,A1,A2) = Mizo — Aozd — z; = 0 and
h2(zo, 71, 1,A2) = A1z1 — Mz} — 20 = 0. The equilibrium
point zo = z; = {A; — 1)/Az will still fork-bifurcate as a
path is traced through parameter space from Ay = A; = 3—¢
to A; = A2 = 3 + ¢, regardless of how that path is cho-
sen. This is because the eigenvalue of the linearized map,
0 = A1 — 2A2z0, passes from o = —1+eat Ay = A2 =3—¢
to d = —1 — ¢ at A\; = A2 = 3 + € while remaining on the
real line, and thus must pass through -1. Also notice that
varying A1 and Xy at different rates (A\; # X2) does not
disrupt the symmetry associated with a fork bifurcation,
hi(zo, z1, A1, A2) = ha(z1, 2o, A1, A2).

This reasoning generalizes to an arbitrary number of
circuit-direct embedded real parameters in an arbitrary
dyamical system exhibiting a generic period-doubling bi-
furcation, because the scalar constraint o; = —1 forms a
locally codimension one set in real parameter space, and
thus cannot be locally circumvented (Result 4).

A real, two parameter formulation-indirect homotopy
function may be obtained for the quadratic map by first
writing the period-two finding problem as a system of al-
gebraic equations, and then embedding independent pa-
rameters in each equation to get hi(zo, 1, A1) = Ai1zo(1 —
Io) -r = 0 and hQ(Io,Il,AQ) = /\211(1 - I]) — Ty = 0.
Notice that at Ay = A2 = 3 there is a fork bifurcation,
but, unlike the circuit-direct case, if A\; # A2 there can be
no fork bifurcation. To see this, one can derive the com-
posed map Py, o P, and observe that it can be reduced
to the form of the codimension-two (locally perturbable)
‘ordinary’ fork discussed in [14]. Observe that in this case
varying Ay and A at different rates (A; # Az) results in
a break of the symmetry associated with a fork bifurca-
tion i.e., hi(zo,z1,A1) # h2(z1,%0,A2). A path traced
through the real parameter plane avoiding the bifurcation
point A; = Az = 3 will lead from the equilibrium point
To = 1 at A} = Az = 2.9, to the emerging period two orbit,
for instance (zo,z1) = (0.7646,0.5580) at A; = A; = 3.1.

Once again, the above reasoning generalizes. A
formulation-indirect homotopy function gives rise to ordi-
nary pitchfork bifurcations, which have codimension two
bifurcation sets (two constraints locally define the set of
parameter values at which the homotopy function fork-
bifurcates). Thus, perturbing a formulation-indirect homo-
topy function around the real parameter vector value at
which the fork bifurcation occurs resolves the fork into a
smooth regular curve leading from %, a mT periodic cir-
cuit solution, to ¢, a 2m7T periodic circuit solution, and a
fold, as shown in Figure 2e and Figure 5a for Example 2.

The circuit interpretation of the real perturbation re-
quired to resolve the period-doubling induced fork (as in
Figure 2e) is that it must take the form of an ¢ magnitude
periodic source added to the circuit with a fundamental pe-
riod of 2mT rather than mT, in order to destroy the sym-
metry of the problem. Such a perturbed circuit will have
no periodic solution with a period less than 2mT in the
neighborhood, and so cannot period double.

Complex parameter homotopy may be used to avoid the
fork bifurcation and continue tracing the mT-period solu-
tion. This is a consequence of the codimension two bifurca-
tion set in complex parameter space, and a local separability
of the quadratic and linear terms in the fork normal form.
In our quadratic example, a path through complex param-
eter space around A; = A2 = 3 may be used to avoid the
bifurcation point and access the equilibrium point on the
other side of the bifurcation, for either homotopy function.
See [14] for a discussion of complex bifurcation avoidance
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Figure 4: a)The buck converter exhibits period doubling behavior as the input voltage Vi is increased. b) Homotopy
parameters embedded in 47-periodic input voltage for formulation-indirect, 2-parameter, source stepping homotopy.

and an explanation of why the unstable periodic orbit is not
accessible (via a regular path) using real homotopy (Result
3). Example 2 further illustrates this section’s results.
Example 2:

As detailed in [7], the state equations describing the op-
eration of the buck converter shown in Figure 4a are

Li = —v + va
Cy = i—-v/R
where v4 = —V f, where V f is the forward voltage across

the diode, when the switch S is open, and vq = Vi, the
input voltage, when the switch S is closed. The switch S
changes state at times ¢’ satisfying the following equation.

veon(t') E A(0(t') = Vies) = vramsp(t')

As described in [7], the buck converter undergoes a period
doubling bifurcation sequence as the input voltage V7 is in-
creased from 20.0v to 40.0v. For instance, at V; =~ 28.0v, a
stable periodic orbit with period T bifurcates to two (iden-
tical in phase space, but shifted in time) stable periodic
orbits of period 27" and one unstable orbit of period 7', and
at V7 & 32.0v the two stable 2T periodic orbits bifurcate to
four stable 4T periodic orbits and two unstable 2T periodic
orbits, and so on.

For switched circuits such as this one, with apriori un-
known switching times, a shooting formulation is easier to
work with than a finite difference formulation. To derive a
two parameter formulation-indirect, shooting based homo-
topy function H(z(0,A),A) = 2(0,) —¢(2(0,A),0,4T) =0,
with state vector is z = (i,v) and parameter vector A =
(A1, A2), we make use of the circuit interpretation of the
real perturbation required to resolve the period-doubling
induced fork; an ¢ magnitude periodic source added to the
circuit with a fundamental period twice that of the orbit
being traced. The formulation-indirect homotopy function
H(z(0,X),)) = 0is obtained by embedding two-parameters
A1 and A; into the now (potentially) periodically varying
input voltage, as shown in Figure 4b. When A; # Az, the
input voltage shown in Figure 4b becomes periodic with pe-
riod 47, which is twice the period of the period 2T orbit
initially being traced in Figure 5a.

Figure 5a shows the regular, bifurcation-free solution
path of the formulation-indirect, real, 2-parameter homo-
topy function H(z(0,),A) = 0, leading from the stable 2T-
periodic solution at A; = A2 = Apgp— to the stable 4T peri-
odic solution at A\; = Ay = Apap+ as the the path through
real parameter space shown in Figure 5b is traced around
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the bifurcation value Ay = A2 = Apgs. In this case the bi-
furcating parameter value Apap = 32.0v. At each step along
the path in parameter space shown in Figure 5b, a locally
convergent shooting method (over a time period 4T) is ap-
plied to the circuit with input voltage shown in Figure 4. At
each new step (Aj, A7) along the path, the periodic solution
at the parameter value of the previous step, (/\'1"1 ,/\'2—1), is
used as an initial condition in the shooting method. Notice
that the path through the parameter plane avoids the bi-
furcation value Apq4s. Since the ranks of the Jacobian D.H
and extended Jacobian [D.H Dy H) of H drop at a period-
doubling bifurcation value Apqs, these ranks can be used to
signal the approach of a period-doubling bifurcation.

More specifically, to trace a path in the neighborhood of
the bifurcation point Ay = Az = Apaqp, we let Ao = A3 +
esin(f), 8 = 0 : x as A; is varied from Apgs— to Apaps, as
shown in Figure 5b. This maneuvering is equivalent to an
e-4T-periodic time-varying parameter vector perturbation
around Apdp

Had we chosen a real circuit-direct homotopy function,
such as that obtained by choosing two time-invariant cir-
cuit parameters, say V7 and R, as homotopy parameters,
the fork bifurcation would not have been avoided, as it was
for the formulation-indirect homotopy function in this ex-
ample. This same process, shooting over twice the period
of the orbit being traced, stepping through the parameter
plane along the diaganal A\; = Az, and making half-circle
excursions around bifurcation points, can be repeated ar-
bitrarily many times to trace out the stable orbits as they
emerge from the period-doubling cascade.

See [15] for an example of the use of complex homotopy
in avoiding period-doubling bifurcations and tracing out the
unstable cycles of a periodically forced, analytic dynamical
system. The unstable orbits may also be traced directly, by
using the stable emerging orbits as starting values to paths
along the diagonal A; = A2, along which shooting is applied
over the period of the stable orbit, rather than twice the pe-
riod of the (originally) stable orbit. This way, the reversal
in stability of the orbit at the bifurcating parameter value
will not be accompanied by a fork bifurcation along the so-
lution path, and the unstable orbit may be traced to the
parameter value of interest. All emerging stable and un-
stable periodic orbits along a period-doubling cascade can
thus be found.

&»

5 SUMMARY

In this paper we focus on the calculation of periodic steady
state(s) of power electronic circuits. We contribute multi-
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Figure 5: a) Parameter path in (b) leads from a 2T- to a 4T-periodic solution. b) Path through real parameter space around

PDB.

parameter homotopy methods and show that they are ca-
pable of avoiding bifurcation points and folds along solu-
tion paths while tracing all emerging stable and unstable
periodic solutions, and thus offer a technique for finding
periodic steady states that is far more robust than existing
methods.

In particular, we have found that two homotopy param-
eters (not more), one real and one complex, are enough
to ensure the existence of smooth, regular, cyclic fold and
period-doubling bifurcation-free periodic-solution paths. In
general, no number of added real parameters, in either
a circuit-direct or a formulation-indirect homotopy func-
tion. can avoid a cyclic fold bifurcation, but a full circle
in complex parameter space around the parameter value
corresponding to the CFB results in fold avoidance. For
a formulation-indirect homotopy function, a half-circle -
excursion in real parameter space around the period dou-
bling bifurcation point will trace emerging stable cycles,
but such a strategy will fail for a circuit-direct homotopy
function. Complex half-circle e-excursions around period-
doubling bifurcation points lead to unstable cycles for either
formulation.
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