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Multiparameter Homotopy Methods for Finding
DC Operating Points of Nonlinear Circuits

Denise M. Wolf and Seth R. Sanders

Abstract— This paper introduces multiparameter homotopy
methods for finding dc operating points. The question of whether
adding extra real or complex parameters to a single-parameter
homotopy function can lead to improved solution paths is inves-
tigated. It is shown that no number of added real parameters
can lead to local fold aveidance, but that generic folds may be
efficiently avoided by complexifying the homotopy parameter and
tracing a closed curve in complex parameter space around the
critical fold value. A combination of real 2-parameter homotopy
and complex parameter homotopy is shown to be sufficient
for avoiding real fork bifurcations and enrumerating all real,
locally connected branches. Additionally, the potential of complex
parameter homotopy methods for finding ail circuit solutions is
explored. Results from algebraic geometry indicate that if an
analytic homotopy function with a single complex parameter is
irreducible, then there exist regular paths through the complex
parameter plane connecting any solution of H(z, \') = 0 to any
other solution of H(z,\’) = 0. Thus, in principle at least, complex
parameter homotopy can be used to find all circuit solutions.

I. PINTRODUCTION

OR A TYPICAL CIRCUIT, the system of circuit equa-

tions is composed of a maximal independent set of
Kirchhoff equations and all the constitutive relations of the
elements [1]. This results in a system of nonlinear differential
algebraic equations. The nonlinearities stem from nonlinear
device models, which can contain polynomial or exponential
terms, and may not be smooth.

A dc operating point is an equilibrium point of this system
of differential algebraic equations, a solution of a system
of nonlinear algebraic equations F(z) = 0, F: R* — R,
where z is a generalized variable vector of circuit currents and
voltages. The system of equations F'(z) = 0 is obtained by
setting all variable derivatives in the circuit equations to zero.
In general, such a system of equations can have no solution,
a unique solution, a finite number of isolated point solutions,
an infinite number of isolated point solutions, or a solution set
composed of nonisolated points. In this paper, isolated point
solutions are assumed.

Early circuit simulators, which relied mainly on the Newton-
Raphson method or one of its variants to calculate dc operating
points of circuits, are considered unreliable. This is because
while these methods are robust and quadratically convergent
if a starting point sufficiently close to a solution is supplied,
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they may fail if no such point is known. Also, these methods
are not well suited to finding multiple solutions.

A. Homotopy/Continuation Methods

Because of convergence issues, and the desire to be able to
compute multiple dc operating points, a variety of continuation
and homotopy methods [4], [3] have been applied to finding
dc operating points of nonlinear circuits. These methods have
the advantage over local Newton-type methods of having
potentially large or global regions of convergence, and are
well suited to finding multiple solutions.

Homotopy (continuation) methods are numerical techniques
for solving systems of nonlinear algebraic equations (F'(z) =
0,F:C™ — C™) based on higher-dimensional function em-
bedding and solution tracing [4], [3], [2]. A continuously
differential homotopy mapping H: C" x U — C™ satisfying
the properties

1) H(z,Ao) = 0 is relatively easy to solve or has a known

solution and

2) H(z,Ap) = F(z)
is obtained, and one or more solutions to F'(z) = 0 are
then traced by following the solution(s) of H(z,\) = 0
from A = Xy to A = Ay. Example homotopy functions
are H(z,\) = (MF(z) + (A - D)(z — a) and H(z,\) =
F(z) = (1 — A\)e ™ F(a), where \g = 0 and A; = 1.

The idea is to construct a parameterized function such that
at one parameter value, say A = Ao, the system of equations
is easy to solve or has one or more known solutions, and at
another parameter value, say A = Ay, the system of equations
is identical to that of the system of interest, F'(xz) = 0.

Thus, a homotopy method consists of the following two
things.

* A homotopy function H. Ideally, it should be one that
guarantees certain algorithmic properties like existence of
solutions, number of accessible solutions, and efficiency.

* A solution curve (or surface) tracing algorithm compati-
ble with the chosen homotopy function.

A homotopy method may then be interpreted as geometric
curve following through solution space and function space,
where the associated solution space can be viewed as a
collection of curves (or surfaces) connecting known solutions
of an easy problem to unknown solutions of the problem of
interest.

B. Background Material

Homotopy/continuation research literature is ubiquitous
across areas of study that involve the numerical solution of
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nonlinear equations. Wacker et al. [4] cites three main re-
search areas associated with homotopy/continuation methods:
stepsize control, numerical treatment of the singular situation,
and constructive topological methods. The latter topic refers to
the design of numerical methods based on an understanding
of solution space topology.

Additional distinctions emerge from differing algorithmic
goals, equation classes, and application areas. For example,
algorithmic goals range over that of finding one, multiple,
or all, real or complex solutions. Systems of equations can
be classified by the the number and type of nonlinearities
present, and the size of the problem. Application areas to
which continuation methods have been applied include elec-
trical circuits, and problems arising in chemical engineering,
mechanical engineering and physics.

For an introduction to this classical subject, and a sense of
its scope, see [4], [3], [2], [11] and references therein. Next,
we highlight some of the history of the use of continuation
methods in circuit simulation applications, list the questions
addressed by this paper, and mention some homotopy method
research results developed in other application areas that are
relevant to the material discussed.

C. Finding One DC Operating Point

Some of the more popular continuation methods used by
engineers to find a single operating point involve applying an
understanding of circuit operation to derive what are some-
times called ‘natural’ maps, meaning that circuit parameters
like voltages, currents, conductances, and temperatures are
used as homotopy parameters. Examples of such methods
include source stepping and conductance stepping [5], [6]. The
idea behind source stepping is that all independent voltage
and current sources are first set to zero, which implies the
existence of a zero-valued dc operating point. The sources
are then incremented, or “stepped,” from zero to their final
values, creating a sequence of circuits to solve ranging from
the first, trivial one, to the final circuit of interest. The idea is,
at each step ¢ + 1, to use the operating point x; calculated at
the previous step (A = A;) as an initial condition in a Newton-
type method applied to the circuit at A = A1, and thus trace
a solution path from zero to a desired dc operating point.

Conductance stepping, also called G-min stepping, is similar
in concept to source stepping. At each node of the circuit a
branch consisting of a conductance in series with a voltage
source is added and connected to ground. At large conductance
values, the operating point, defined as the vector of node
voltages, is approximately that given by the attached voltage
sources. Then, as the conductances are decreased to zero,
these added branches “detach” from the circuit, and we are
left with the circuit of interest. The idea then is to step the
conductances to zero, all the while tracing a solution path to a
desired operating point. Other natural maps embed a parameter
directly in the nonlinear terms, as described in [10].

Though natural methods have been found fairly successful,
they can encounter difficulties. In the absence of special con-
straints on the function F' or the homotopy function H, contin-
uation methods may suffer from a variety of ills, including the
presence of bifurcations and sharp folds (turning points) along
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Fig. 1. Folding, abbreviated, divergent, and bifurcating homotopy solution

paths.

solution paths, infinite solutions, abbreviated paths, closely
spaced solution curves, and disconnected branches [11]. Some
of these possibilities are illustrated in Fig. 1.

In an effort to solve some of these problems, Probability-1
convergent homotopy methods have been applied to finding dc
operating points of circuits [11], [10], [8], [7]. Probability-1
convergent homotopy methods guarantee, with the satisfaction
of an inner-product condition 3r € R s.t. F(z)Tx > 0 when
|z] = r), a bifurcation-free path with finite arc length to a
simple solution of F(z) = 0 for almost all initial values
(x = mo,A = 0) of a homotopy function H(z,A) = 0
[28]. A typical probability-1 homotopy function is H(z, ) =
AF(z) + (1 — M)(z — a), with zy = a.

For circuits that satisfy this inner-product condition, like
transistor circuits with passivity and no-gain properties [8],
Probability-1 methods rule out abbreviated paths, bifurcating
paths, and paths that diverge to infinity at a finite parameter
value. Abbreviated paths are ruled out because the homotopy
function H(z,)) = AF(z) + (1 — A)(z — a) has a single
solution £ = @ at A = Ay = 0, and so cannot double back
before reaching a solution at A = Ay = 1. Bifurcations
are generically ruled out because the vector a is chosen
randomly, and this has the effect of destroying any special
symmetries in F' that might give rise to bifurcations. By
Sard’s theorem, such bifurcations are not generic [27]. Finally,
solution paths capable of diverging to infinity are ruled out
by the inner-product condition, which guarantees an invariant
index. Applying circuit-theory ideas, one can notice that
passivity-like properties also prevent solutions from escaping
to infinity, as proved in [8]. Other problems, like sharp folds
along the X axis and closely spaced and disconnected branches
are not avoided.

For a given single-parameter homotopy function, existing
solution tracing techniques range from simple monotonic step-
ping, to switched parameter methods [9], to normal flow [11]
and simplicial-combinatoric techniques, to interval methods
[15]. Arc length paramaterizations are often employed. All
of the above curve-tracing techniques, with the exception of
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monotonic stepping, are capable of handling solution curve
folds along the A axis. However, the efficiencies depend
strongly on fold “sharpness,” as tighter turns require a smaller
step size.

D. Finding Multiple DC Operating Points

Most continuous, single-parameter homotopy methods for
finding multiple solutions of nonlinear circuits take either a
multiple starting point [3], [9], [30] or a Lambda-Threading
[9], [10] approach. One version of a multiple starting point
homotopy method to find all real and complex solutions of
F(z) = 0 involves embedding F'(z) in a family of systems
parameterized by A, with one system in the family being
easy to solve. The solutions of the trivial system should
be connected via smooth solution paths to all isolated roots
of F(z). Specifically, the idea is to construct a function
H(z,A\):C™ x U — C™ such that F(z) = H(z,A;) and
Q(z) = H(z,Ao) satisfy the following three properties. 1)
(Triviality.) The solutions of Q(z) = 0 are known, or easy
to find; 2) (Smoothness.) The solution set of H(xz,\) =
0 with Ay < A < Ay consists of smooth paths, each
parameterized by A; and 3) (Accessibility.) Every isolated
solution of H(z,Af) = F(x) = 0 is reached by some path
originating at A = A, starting at a solution of H(z, o) =
Q(z) = 0.

If these properties hold, then all real and complex roots of
F(z) = 0 may be found by applying standard curve tracing
techniques [11]. Notice however, that these properties do not
preclude solution paths that diverge to infinity as A approaches
A = Ay. Such divergence will occur if Q(z) = H(z, o) =0
has more finite solutions than does F'(z) = 0.

For example, if F'(z) = 0 is a system of polynomial equa-
tions, then a commonly used homotopy function is H(z, A) =
AF(z) + (1 = A)Q(z), where \g = 0, Ay = 1, and Q(z) is
a simple system of polynomials with the same total degree
as F'. Such a homotopy function satisfies the three conditions
listed above, but is likely to suffer from divergent paths at
A =1, because the total degrec of a system of polynomials is
just an upper bound on the number of solutions it possesses,
and many polynomial systems found in practice are highly
deficient [30]. Even when homogenized (add another variable
to make all monomials the same degree, and project all
solutions, including infinity, onto a unit sphere [2]), this
disparity results in a waste of computation time. HOMPACK
[12] and CONSOL [2] are two arclength continuation software
packages that use the Bezout upper bound to find all roots of
a system of polynomial equations.

Properties (1-3) can be difficult to establish for systems
that are neither polynomial nor polynomial-bounded [29].
Efficiency is always an issue, and the problem of finding
all circuit solutions remains largely unsolved, especially for
nonpolynomial-bounded circuit equations, where the number
of real solutions is not easily bounded, and the number of
complex solutions is likely to be infinite.

For the multiple starting point technique described above,
design of an appropriate starting system with known solutions
and no diverging paths is a formidable task. See [24], [25],
[26] for an approach to this problem that involves designing a

homotopy function that locally connects all solution branches
in the neighborhood of infinity.

Next, we list the questions addressed in this paper, and
review some related work done in other application areas.

E. Questions Addressed in This Paper

This paper addresses the general question of whether adding
extra real or complex parameters to a single-parameter ho-
motopy function, effectively increasing the dimension of the
solution space available for maneuvering, can lead to improved
homotopy continuation methods. The topics addressed fall
roughly in the two following areas; the numerical treatment
and topological basis of the singular situation, and construc-
tive topological methods. More specifically, we address the
following questions.

1) What is the minimum number of real and/or complex
homotopy parameters that must be added to avoid folds,
forks and other bifurcations along solution paths? How
can this avoidance be accomplished, and will all locally
linked solution branches be accessible?

Here we assume a generic (nonarc length) homotopy
function parameterization.

2) What is the minimum number of complex homotopy
parameters that must be added to guarantee a solution
set that connects all circuit solutions? What condition
must the homotopy function satisfy to achieve this
connectivity? What is the nature of these solution sets,
and how might one exploit knowledge of the topologies
in order to develop algorithms for finding all solutions?

Placing These Questions in Context; Preview of Results:
Question 1, stated above, is addressed in Sections III and
IV of the paper, after a brief definition of real and complex
multiparameter homotopy methods in Section II. These
sections show that multiparameter homotopy methods can
avoid folds and bifurcation points along solution paths, via
appropriate paths in real or complex space. Work most closely
related to that in Sections III and IV can be found in [16]
(complex space homotopy) and [27] (real space bifurcation
perturbation). Reference [16] contains a scheme for avoiding
singular points equivalent to the half circle in complex
parameter space that we have prescribed for accessing center
solution branches of real forked bifurcations, in Section IV.
One of the distinctions between the work in [16] and that in
Sections IIT and IV is that we identify different sources of
Jacobian singularity, and discuss the local real and complex
solution space geometry in the neighborhood of these points.
This geometry is then linked to the problem of tracing solution
paths that avoid such points and return to all locally linked
real solution branches.

Question 2, as stated above, is addressed in Section V
of the paper. We invoke results from algebraic geometry to
show that if an analytic homotopy function with a single
complex parameter is irreducible, then there exist regular paths
through the complex parameter plane connecting any solution
of H(z, ") = 0 to any other solution of H(z,\') = 0. Thus,
in principle at least, complex parameter homotopy can be used
to find all circuit solutions. The material developed in this
section is a prelude to work done in [26], [24], [25], where
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Fig. 2. Expand dimensionality of homotopy function and try to forge better
paths across solution spacefrom 2o to 2.

z/H(z,X) =0

H(z,A)=2-2=0

H:RxR-R ,\‘k—._) A
=
Fig. 3. Example of a fold.

this global connectivity property in complex solution space
is exploited by designing homotopy functions that force all
circuit solutions to be locally connected in a single algebraic
element around infinity. Complementary work may be found
in papers by Seader et al. [13], [14], in which the possibility
of entering complex space to find roots on branches that fail to
form closed paths, or to bridge certain computation branches,
is discussed.

II. MULTIPARAMETER MAPS AND METHODS

Standard homotopy functions, which we will refer to as
single parameter homotopies, are a special case of multiparam-
eter homotopies. A typical single parameter homotopy function
used to solve f(z) = 0, f:R™ — R", is

H(z,\) = (Nf(@) + (1= Nglz),  Ae[01]. (D

Embedding f into H, a function with one added parameter
and the starter system g(x) = 0, transforms the solution set
of f(x) = 0 from isolated points in %" to a set of curves
in ®™ x [0, 1], the characteristics of which will influence the
efficiency of any curve tracing algorithm. If, for example, the
solution curves are long, circuitous and/or ill-conditioned, the
algorithm may be inefficient or may not converge.
Two examples of 2-parameter homotopy functions are

H(I,/\l,)\g) = ()\1)f(.’l)) + (1 - )\Q)g(.'l?), A1, A €R
and
H(z,A) = (N f(z)+ (1 —-Nglz), AeC. €))

The first is an example of a real 2-parameter homotopy map
and the second of a complex parameter homotopy map. In the
latter, the two parameters are the real and imaginary parts of
A. In the case of complex parameter homotopy, we assume
that the resulting function H is well defined for complex z
and ), specifically that H has a useful region of analyticity in
C"™ x C. A function H(z, ), h: C™ x C — C, is analytic if
it has a local power series expansion in all variables.

€))
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Fig. 4. (a) Bifurcation set of codimension-1 in real parameter space. (b)
Bifurcation set of codimension-2 in complex parameter space.

Real())

In these cases, embedding f into H, a function with two
parameters, transforms the solution set of f(z) = 0 from
a set of isolated points to locally 2-D surfaces. See Fig. 2
for an illustration. Since the solution set is composed of
surfaces rather than curves, there are (if any) infinitely many
solution paths passing from the solutions of the initial, simple
problem g(z) = 0 at Ay = A = 0 (A, = A = 0)
to the solutions of the final, hard problem f(z) = 0 at
A1 = A =1 (A = 1,A = 0). This lack of uniqueness
opens up the possibility of forging paths over the solution
surfaces that may be better than the solution curves pro-
duced by the corresponding single parameter homotopy, as
well as relaxing the conditions on homotopy functions that
guarantee smooth nonintersecting paths to solution points.
Thus, an ideal multiparameter homotopy method is an al-
gorithm capable of forging paths on solution surfaces from
the initial parameter vector Ag to the final parameter vector
Ay that are as short and smooth as possible, and that avoid
singularities and any other point and curve features deemed
undesirable.

The following two sections begin to answer the question
of which ‘bad’ point and curve features may be avoided by
employing real multiparameter homotopies or complex mul-
tiparameter homotopies. Specifically, Section III deals with
folds along solution paths, while Section IV addresses bifur-
cations. These sections also outline some necessary features
of algorithms capable of avoiding such obstacles. Section V
outlines the potential for finding all solutions of a given circuit
or system of algebraic equations via complex multiparameter
homotopy.
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Fig. 5.

Complex 2-parameter homotopy for fold avoidance: (a) A 27 rotation in complex parameter space around the critical fold value. (b) The complex,

regular solution path (fold-free) corresponding to the complex parameter excursion shown in (a).

11(mA) ig(mA)

0 1 2
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Fig. 6. (a) Tunnel diode circuit. (b) Diode characteristics.

III. AVOIDING FOLDS

A folding solution path associated with a real 1-parameter
homotopy function H(z,\) =0 (H:R" X L — R, L. C R)
reverses direction along the parameter axis. Although a fold
can correspond to a repeated root of multiplicity greater than
two, generic folds correspond to real double roots, occurring
at parameter values we refer to as generic fold values. At a
solution corresponding to a generic fold value, the Jacobian
matrix DH,(z,A) drops rank, while the extended Jacobian
matrix DH, x(z,A) maintains rank. Note that D H,, indicates
the Jacobian matrix OH/Jz with A acting as a parameter.
The term DH, »(x, A) refers to the extended Jacobian matrix
[0H/0xz,0H /O], with A treated as an additional variable.

In the present paper, we deal only with singular points
where the matrix DH, drops rank exactly once. In this
case, Lyapunov-Schmidt reduction, as discussed in [21] and
summarized in Appendix A, can be applied to develop a
scalar equation locally characterizing the singularity. In our
discussions, we take advantage of this fact by analyzing
scalar equations to develop intuition that is then applied to
multivariate systems of equations.

The simplest example of a solution curve with a fold, or
turning point, is shown in Fig. 3. At the critical fold value
A = 0 of the homotopy function H(z,\) = 2% — A = 0, two
real solution branches zT = +\/X and = = —+v/ A coalesce
into a real double-root. Figs. 7 and 9 illustrate further
examples of solution curves with folds that, though arising
from more complicated equations, are locally equivalent to
the simple quadratic example.

Single-parameter homotopy methods capable of handling
solution curves with folds, such as those in Figs. 3, 7, and 9
must be able to respond by reversing direction along the pa-
rameter axis. For sharp turns, this maneuver can be inefficient
for arc length parameterized methods such as those in [11], and
interval methods [15], because of the small step sizes required
to make these turns. Switched parameter algorithms [9] may
miss sharp turning points if the step size is not small enough,
and can exhibit cyclic behavior near switching points.

V1, V2
V2

4

....... 7 vl

i 2 A

Fig. 7. Drawing of real solution curve with folds for the tunnel diode circuit,
passing through five solutions v = (v1,v2), at A = 1.

In this section, we assume that one is given a single pa-
rameter homotopy function H(z, A) = 0, and that at a certain
parameter value, say A = Ay, one encounters a fold in the
solution curve along the parameter axis. Note that this implies
that the homotopy function is not arc length parameterized.
We then ask the question of whether introducing extra real or
complex parameters into the homotopy function H, and then
locally maneuvering in the enlarged parameter space around
the point that corresponds to the fold point A = A in the
original function, can lead to avoidance of a fold along the
solution path. We show:

Result 1: Real multiparameter methods generally cannor

avoid folds along solution curves without passing through

a singular point, corresponding to a repeated root of order

two or greater.

Result 2: Complex parameter methods can avoid folds

along solution curves. Generic folds may be avoided by

tracing a closed curve in complex parameter space around
the parameter value corresponding to the fold.

Results 1 and 2 may be explained by considering the
codimension of bifurcation sets in real and complex parameter
space. For a system of parameterized nonlinear equations
H(z,)) = 0, the bifurcation set B consists of parameter
vectors A for which the system of equations has repeated roots.
Here, the overbar notation () denotes a parameter vector. A
regular value is the term used to describe a parameter vector
that does not result in repeated roots, and hence does not
belong to the bifurcation set.

A value X, in the bifurcation set B is characterized by the
existence of an z; satisfying

H(.Z’b, :\b) =0
rank(DH,(xs, Ap)) < n.

C))
&)
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Since generic fold values are parameter values at which a
homotopy function has a real double root, generic fold values
belong to the bifurcation set. Thus, bifurcation set properties
are intimately linked to the potential for fold avoidance in real
and complex parameter spaces.

Fig. 4 illustrates the codimension of bifurcation sets of
generically parameterized functions in real and complex pa-
rameter space. Generally speaking, a bifurcation set in real
parameter space has codimension one and divides the param-
eter space. If a set may be described by a single constraint
on a larger space (say "), then it has codimension one
with respect to that space. For instance, a curve has codi-
mension one within a plane [as shown in Fig. 4(a)], and a
locally 2-D surface has codimension one within R3. As a
specific example, the bifurcation set of the real-coefficient

quadratic equation 22 4+ Az + A = 0 has codimension
one since it is described by the curve A} — 4\ = 0 in
R2.

In complex parameter space, the bifurcation set has
codimension two and does not divide the parameter
space. If a set may be described by two constraints
on a larger space, it has codimension two with respect
to that space. For example, a point within a plane
has codimension two (shown in Fig. 4(b)), as does
a curve within R3. The complex-coefficient quadratic
H(z,\) = 22+ X = 0 (A € C), for instance, has the
bifurcation set A = 0, a point within the complex parameter
plane.

To see why bifurcation sets in real parameter space have
codimension one and and those in complex parameter space
have codimension two, consider (4) and (5), used to character-
ize the bifurcation set. In the real case we have the n equations
H(zx,)) = 0 plus the scalar real equation det(DH.(z,\)) =
0. Hence, the implicit function theorem may be applied to
derive a single equation that locally describes the codimension
one bifurcation set (one constraint in parameter space).! In
contrast, (5) imposes two constraints in the complex case,
Re(det(DH,(z, X)) = 0 and Im(det(DH,(z,As))) = O,
which leads to the derivation of a codimension two bi-
furcation set by application of the implicit function theo-
rem.

In a parameter space with a codimension one bifurcation
set, it is in general nor possible to trace a continuous path
from one arbitrarily chosen point to another without passing
through the bifurcation set. If, for instance, one wants to trace
a continuous path from system S1 to system S3 in Fig. 4(a),
this path must pass through the bifurcation set B. Since
generic fold values belong to a codimension one bifurcation
set with respect to real parameter space, embedding additional

IRecall that the implicit function theorem [27] implies that, given a
continuously _differentiable function F:®" x R™ — $R" and a point
(zo,;g) € R™ x R™ such that the Jacobia.n_DF,(zo,/\o) is full rank,
then there exists an open neighborhood of (2o, Ag) and a unique function g
over which z = g(X). Applying this theorem to a collection of n equations
consisting of n — 1 of the n equations H(z,A) = 0, plus the equation
det(DH,(z,\)) = 0, at points (z5, Ap) where the rank of the Jacobian of
the n assembled equations is full, allows z to be expressed as ¢ = g(A) over a
neighborhood of (3, Ay ). One may then substitute the function z = g(A) into
the remaining equation of H(x,A) = 0 to get an equation h;(g(A),A) =0
locally describing the bifurcation set of H.
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real parameters in a homotopy function with folding solution
paths cannot, in general, lead to the possibility of paths
through parameter space that do not intersect the bifurcation
set, which includes generic fold values and singular points
corresponding to repeated roots of multiplicity greater than
two.

In a parameter space with a codimension two bifurcation
set, it is possible to trace a continuous path from any
arbitrarily chosen regular point to any other without passing
through the bifurcation set, as shown in Fig. 4(b). Generic
fold values belong to a codimension two bifurcation set
with respect to complex parameter space. Thus, generic
fold values associated with real 1-parameter homotopy
functions may be avoided by complexification of the homotopy
parameter A and maneuvering through the complex parameter
plane. As discussed above, the corresponding solution
path also becomes complex for the complex parameter
A

In summary, the codimension of bifurcation sets in real
and complex parameter space has the very important impli-
cation that given a real homotopy function H with folding
solution paths, there is a continuous path in complex pa-
rameter space from an initial “easy” system H(z,Ag) = 0
to the final ‘hard’ system H(z,Af) = F(z) = 0 that
does not pass through the bifurcation set. This is not true
in real space. Results 1 and 2 are based on these proper-
ties.

Application: Avoiding Folds with Complex Parameter Ho-
motopy: We now move on to fold-avoidance in complex
space. As stated in Result 2, folds along solution curves
may generally be avoided by tracing a closed curve (27
rotation) in complex parameter space around the parameter
value corresponding to the fold. To illustrate, consider the
quadratic equation H(z,\) = z% — A = 0, which, for varying
A > 0, describes a generic fold with turning point A = 0
(see Fig. 3). If we want to pass from z = /€ on the solution
manifold z = VA to © = —/¢ on the solution manifold
z = —/\ without encountering a turning point, we may make
A complex and trace the curve A = ee'’ in parameter space
from § = 0 to # = 2 [see Fig. 5(a)]. This full circle traces
the solution z = +/ee’s from /e to —/c along a smooth,
fold free path [see Fig. 5(b)]. More generally, if a generic
fold (locally representable by a scalar quadratic via Lyapunov-
Schmidt reduction, as discussed in Appendix A) is encountered
while tracing a real homotopy path, then there exists a starting
value X\*, a radius r, and a direction d € {-1,1}, such
that the traversal of a full circle in complex parameter space
A= X +dr(1 —e?),0 = 0 : 2, will result in a fold-
and bifurcation-free path around the generic fold value. In the
quadratic example, H(z,)) = 22 — A = 0, the path being
traced toward the fold point is along decreasing A, so d = —1.
As noted previously, at a generic fold value the matrices
DH, and DH, ) drop and maintain rank, respectively, so
their conditioning may be used as a local test to indicate the
approach to a fold.

A larger context for understanding fold avoidance in com-
plex space may be found in algebraic geometry [17], as
follows. A key result in this field is that an ordinary branch
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Fig. 8. (a) Complex orbit in parameter space. (b) Complex solution trajectory
from v = (0.199, 3.754) to v = (1.775,3.707) around a fold.

point, a (possibly) complex-valued parameter value corre-
sponding to a repeated root of multiplicity n, must be circled
n times in complex space in order to return to the orginal
solution manifold. Each revolution has the effect of moving
the solution point from one solution manifold to another (there
are n), until the nth revolution returns the solution point to the
original manifold. This local solution structure of n connected
sheets is called an algebraic element of order n — 1.

A generic fold in real parameter space is an algebraic
element of order one, with a repeated root of multiplicity
two. A fold that does not correspond to a repeated root
of multiplicity two may be associated with a higher order
algebraic element. In this case, the Hessian matrix DH,,
will drop rank, along with DH,. For a fold corresponding
to a repeated root of multiplicity n, locally representable by a
change of coordinates to the form z™ — A = 0, & revolutions
in complex parameter space will result in fold avoidance and
a return to a real solution branch. For example, consider the
polynomial system z* — X = 0, which has four repeated roots
at A = 0 with two real solution branches. In order to pass
from 2 = €¢'/4 to £ = —¢/* (around the fold value \ = 0),
two revolutions in complex parameter space are required. In
the case of a transcendental singularity, an infinite number
of solution branches may exist, so that no finite number of
revolutions will return the solution trajectory to a real branch.

Next, we present fold-avoidance on an example circuit, and
on the example homotopy function H(z, \) = sin(1/z) — A.
Our simulation results indicate that the efficiency of fold
avoidance in complex space is relatively independent of fold
sharpness.

Example 1 (Tunnel Diode Circuit): The tunnel diode cir-
cuit in Fig. 6 (from [9]) has operating points determined by
the loop equation f;(v) = E — Rgy(v1) — (v1 + v2) = 0 and
node equation f>(v) = g1(v1)—g2(ve) = 0, with v = (vq,v9).
The tunnel diode currents are given by i1 = g1 (vq) = 2.5v3 —
10.50% +11.8v; and iz = g2(v2) = 0.4303 — 2.6902 + 4.560,.
The real 1-parameter homotopy function used in [9] is

Hi(v,A\) = fi(v) + (A = 1) fi(vo)
Hy(v,\) = fo(v) + (A = 1) fa(vo)

with A,v1,v2 € R. At A = 0, a solution to H(v,A) = 0 is
v = vg, which serves as a starting value for the continuation
path. Fig. 7 shows a real folding solution path emerging from
vo = (0,0). Critical fold values occur at around A ~ 0.8, 1.2
and 2.1.

We obtain a complex parameter homotopy function from
the single parameter function defined in [9] by complexifi-
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Fig. 9. (top) Graph of sin(1/z). (middle) Simple closed curve traced
through complex parameter space with A = 0 as an endpoint, encircling
A = 1. (bottom) Corresponding path through complexsolution space.

cation (A = A, +1)\;). Now H':C? x C — C?. The real
representation of these equations is as follows.

Re(Hl(UT5/Ui9)\’I‘,/\i)) 0
Re(HZ('U'm Vi, )\7‘, )\1)) =0
Im(Hl('l)Tv Vi, AT; )\'L)) =0
Im(H2('UT7 Viy Ar, >\z)) =0

with v, = Re(v) and v; = Im(v). The new solution vector is
v = (Ur,0i) = (Vir, V2r, V14, Vi)

Fig. 8 shows the smooth, fold-free complex solution path
from v = (0.199,3.754) to v = (1.775,3.707) obtained by
tracing a full circle in parameter space around the fold point
A= 2.1,

Example 2: Simulation results on the homotopy function
H(z,\) = sin(1/z) — A = 0, often used as a benchmark
for fold traversal in path following algorithms (like interval
methods, [15]), indicate that the efficiency of fold avoidance
in complex space is relatively independent of fold sharpness.

The function H(z,A) = sin(l/z) — A = 0, shown in
Fig. 9(top), has folds of increasing sharpness at A = =1
as z — 0. Setting \* = 0 and » = 1.2, the trajectory
A=A +r(l—¢"),0=0:2r, through complex parameter
space shown in Fig. 9(middle) leads to a smooth, fold and
bifurcation-free path in complex solution space from z = ﬁ
to z = m Fig. 9(bottom) shows a solution trajectory
from z = o oz = T(JT:)lF'

Using a simple Newton corrector scheme, performance in
complex space appeared to be independent of fold sharpness
and mainly limited by machine precision. For instance, at k =
10%,10%,10*, and 107, and with r = 1.2 and a step size of &~
(20 steps around the complex parameter circle using a simple
Newton corrector scheme), a single Newton iteration per step
was required to trace a path from z = = to z = FiDe
with a tolerance of 1/100k. Note that while fold sharpness
greatly increases with &, the performance of this simple, fixed
step-size, monotonic Newton corrector scheme did not vary.
These results are in direct contrast to existing path following
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Fig. 10. (a) A path through real, 2-D parameter space passing through
the cusp (A1 = Az = 0) of the bifurcation set, given by the equation
—(A1/3)% 4+ (A2/2)? = 0. In Regions 1 and 2, H(x,A1,A2) = O has
one and three real solutions, respectively. (b) The forked real solution path of
the homotopy function H(z, A1, A2) = 23 — A1z + Az = 0 corresponding
to the path through parameter space shown in (a).

schemes in real space such as arclength parameterized methods
and interval methods, for which efficiency greatly depends on
fold sharpness.

IV. AVOIDING REAL FORK BIFURCATIONS

Homotopy paths with real bifurcations are characterized by
splitting paths in solution space, a nontransversal intersection
of the path through parameter space with the bifurcation set,
and a loss of rank of the real extended Jacobian matrix
DH,, = [0H/0z,0H/0)\] at the bifurcating parameter
value. An example of a real bifurcation along the solution
curve of a single parameter homotopy function is the fork
'shown in Fig. 10(b), where one real solution path bifurcates
into three real solution paths. In the case of the third order
polynomial example H(x, A1, A2) = 23 — Az + Az = 0, this
forked solution could correspond to a line in parameter space
passing through the midline of the bifurcation set. That is,
the solution is the set of points z such that H(z, A1, A2) =
2% — Mz + Ay = 0 with Ay = 0 and \; varying from —1 to
1. We call 23 + z = 0 our initial system, and 2° — 2 = 0 our
final system of interest. At A\; = 0 the single real solution
curve hits a bifurcation point (triple root) and then splits
into three real branches. Though not generic, fork bifurcations
arise in circuit applications because of symmetries and ideal
element modeling (see Example 3). They also arise when
applying homotopy methods to finding periodic solutions of
parameterized dynamical systems exhibiting period doubling.
See [23] for a discussion of the relationship between period-
doubling bifurcations, homotopy function choice, and the
associated codimension of the singularity along the algebraic
solution path.

A solution path corresponding to a single-parameter homo-
topy encountering a bifurcation point will either fail when
the Jacobian DH,. » drops rank (unlikely because of sampling
and finite precision) or suffer from ill-conditioning in the
neighboring region. We want to know whether real and/or
complex multiparameter methods can avoid a fork bifurcation
point, and, if so, whether all three branches will be accessible.
We have found that:

Result 3: Real 2-parameter homotopy can be used to forge a

path around the fork bifurcation point to access either outer

branch without passing over a fold. Such methods, however,
cannot be used to forge a path around the bifurcation point
to access the middle branch without passing over a fold.

A

@ (b)

Fig. 11. Real 2-parameter homotopy is used to avoid the fork bifurcation
and access either outer solution branch: (a) A path through the real parameter
plane avoiding the bifurcation point Ay = A2 = 0. (b) The solution topology
of the function H(z, A1, A2) = 23 — A1z + A2 = 0 corresponding to the
path shown in (a). Note that the fork has decomposed into a simple curve
leading to an outer solution branch and a fold.

Result 4: Complex 2-parameter homotopy can be used to
forge a path around the fork bifurcation point to access the
middle branch without passing over a fold.

In the case of our polynomial example, Fig. 11 shows the
changes in solution curve topology that occur when real 2-
parameter homotopy is used to bypass the triple root. Upon
approaching the bifurcation point A\; = Ay = 0, a real half
circle (A1, A2) = (—ecosf,e sinf),e > 0 is traversed from
6 = 0 to = 7 around the bifurcation point. This has the effect
of splitting the fork into a fold, and a simple curve which is
traced to an outer solution branch, as shown in Fig. 11(b).
While either of the two outer solution branches of the fork
may be reached without encountering a bifurcation point by
tracing a half circle through real 2-parameter space (§ > 0 for
one, § < 0 for the other), the middle solution branch cannot
be reached without passing over a fold.

Results in algebraic geometry can explain these observations
as follows. As a class, bifurcation values corresponding to
roots of multiplicity three (such as A; = A2 = 0 in the
real parameter plane of our polynomial z3 — Az + Ap = 0)
generally have codimension two in parameter space. This
means that any perturbation of (A1, A2) away from (0,0) will
take us to solutions that are not triple roots. Also, since a
real bifurcation corresponds to a nontransversal intersection
with the bifurcation set in parameter space, a perturbation of
the path through parameter space generally resolves the real
bifurcation. Thus, we would expect a path through parameter
space that avoids (0, 0), such as the one shown in Fig. 11(a),
to transversally intersect the bifurcation set, to be free of
triple root values, and for the corresponding solution curve(s)
to be free of real bifurcations. This expectation is borne
out, as evidenced in Fig. 11(b). In fact, forging a real path
around the fork bifurcation point is equivalent to the classical
remedy against codimension-two or higher bifurcations, that
of perturbing the equations by a small amount.

However, as discussed in Section III, bifurcation sets in real
parameter space have codimension one and divide the space.
The bifurcation set of H(z, 1,A2) = 23 — Az + A2 = 0,
described by the equation —(A1/3)3+(A2/2)? = 0 and shown
in Fig. 10(a), is entirely composed of generic fold values
(parameter values at which H has a double root), with the
exception of the triple root value A; = Ao = 0. This means
that although we expect that a path through real parameter
space from (A1, X2) = (—1,0) to (A1, A2) = (1,0) avoiding
(A1,A2) = (0,0) will not be associated with a bifurcating
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Fig. 12. Complex 2-parameter homotopy is used to access the center root: (a)
A half-circle excursion in the complex parameter plane around the bifurcation
point A = 0. (b} The root locus of H(z,Ar, Ai) = 2% + (Ar + X))z = 0
corresponding to the parameter path shown in (a). The outer branches separate
from the central branch.

solution path, we do expect any such path through parameter
space to include a generic fold value, and thus be associated
with a fold. As seen in Fig. 11(b), this fold is not a problem
for the homotopy method because the solution path being
followed is not the one with the fold. Notice that there are
two disconnected curves, one simple and the other folded.
Bifurcation avoidance in complex parameter space is illus-
trated in Fig. 12. Parameter A5 is held constant at zero, and a

curve A\; = ee'? from 6 = 0to @ = 7, a half circle, is traversed”

in the complex parameter plane. With this excursion in the
complex domain, the two outer solution branches separate into
the complex plane from the central real branch, as shown in
Fig. 12(b). Thus, a complex half-circle in parameter space will
bypass the bifurcation point and lead to the center root.

To understand fork bifurcation avoidance in complex space,
we introduce the concept of reducibility [19], [18]. An equation
H(z,A) = 0 is reducible if it may be written in product form
H(z,A) = P(z,\)Q(z,\) = 0, so that for any value of A,
the roots of H are the union of the roots of P and @, both
analytic functions in & and A passing through zero. Examples
of analytic functions are polynomials and exponentials.

With the exception of parameter values A for which P
and ) have the same solutions, the solution set of H is
composed of invariant sets. That is, a homotopy path that
starts on the solution surface of P or Q, respectively, will
stay there, regardless of the path taken through parameter
space. As we will see in the next section, this is not true for
irreducible systems of equations, for which solution surfaces
are connected.

Let us now consider the path along the midline (A = 0) of
the bifurcation set of the homotopy function H(z, A;, \y) =
23 — A1z 4+ Ay = 0. Along this path this homotopy function
is reducible and becomes H(z, A1) = (2% — A1)z, the product
of complex-coefficient polynomials P(z, A1) = 2 — A; and
Q(xz) = z. At A\; = 0, the double root of P(z,)\;) = 0
coincides with the single root of Q(z), giving H a triple root.
This junction is the fork bifurcation shown in Fig. 10(b). Since
H is reducible along the midline (A2 = 0), and the single real
solution branch from A; < 0 is on the same solution manifold
as the central solution branch for A; > 0, forging a path in
complex parameter space from A; = —¢ to A; = ¢ around the
bifurcation point A; = 0 not only pre-empts a bifurcating or
folded solution path; it also eliminates the possibility of the
solution curve leaving the solution set of (). Thus, a half-circle
traversal in complex parameter space must lead to the central
branch.

The above conclusions also apply to irreducible homotopy
functions exhibiting forked, bifurcating solution paths. To see
this, consider a perturbed version of the previous example,
namely H(z, A1, A2) = 2% — Az + Ag with Ay = €A, This
homotopy function is irreducible, and has bifurcating behavior
equivalent to that of the previous example. In this perturbed
case, varying A; from —1 to 1 amounts to following a smooth
path, tangent to Ay = 0, through the point (0,0) of the
bifurcation set shown in Fig. 10(a). The resulting behavior
obtained by complexifying A; is topologically identical to
that obtained in the preceding example. Specifically, the real
(z = 0) and complex (z = £+/A;) solution branches are
perturbed by a term of order e\, which is an asymptotically
negligible perturbation for sufficiently small € and \;. Hence,
the behavior is locally identical to that of the unperturbed
homotopy.?

In summary, real bifurcations are characterized by a
drop of rank in the extended Jacobian DH, (z,A) =
[0H/O0x,0H/O)], a nontransversal intersection with the
bifurcation set in parameter space, and nongenericity. When
encountering a real forked bifurcation along a homotopy path
as in Fig. 10, real two-parameter homotopy may be used to
avoid the bifurcation point and access the two outer solution
branches, and complex parameter homotopy may be used
to access the central solution branch without passing over a
fold. Similarly, if the fork bifurcation is approached from the
opposite direction, real two-parameter homotopy may be used
to trace a fold- and bifurcation-free path from either outer
branch to the single solution branch beyond the bifurcation
point, and complex parameter homotopy may be used to trace
a regular path from the central branch of the fork to the single
solution branch beyond the fork bifurcation point. In all cases
local € half-circle excursions through parameter space signaled
by a drop in the rank of the Jacobian D, yH are sufficient
to accomplish this avoidance. Though scalar equations were
used to develop the reasoning supporting these results, the
application of Lyapunov-Schmidt reduction (as mentioned in
the previous section and summarized in Appendix A) ensures
that the reasoning applies to multivariate systems of equations
as well, such as those describing nonlinear circuits. We now
present a simple circuit example.

Circuit Example 3 (Flip-Flop): The flip-flop of Fig. 13 has
a bifurcation that is topologically identical to the fork de-
scribed above when voltage source continuation is used to
find dc operating points [10]. We take the real 2-parameter

2Reference [16] contains a scheme equivalent to the half circle in complex
parameter space that we have prescribed for accessing center solution branches
of real forked bifurcations. The authors of [16] suggest that such a scheme
is appropriate for avoiding all types of singular points, an assertion that is
problematic if one is interested in real solution curves only, or in tracing all
solution curves. If the singular point encountered corresponds to an ordinary
branch point, but not to a real bifurcation, a half-circle excursion in complex
parameter space will result in a trajectory leading to a complex solution curve.
For example, if one takes the polynomial H(z, A2) = 2% 4+ Xy = 0 and traces
a path through parameter space along the X2 axis, the singular point at Ay = 0
now corresponds to an ordinary triple root, rather than to a fork bifurcation. A
half-circle excursion in the complex plane around the singular point Ay = 0
will take the solution to a complex branch z = |Az|1/3¢%27/3 In this case a
37 rotation is required to bypass the triple root and return to a real solution
curve.
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Fig. 13. Flip-flop circuit diagram.
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Fig. 14. Real two-parameter homotopy is used to access outer solution
branches: (a) A curve through the real parameter plane avoiding the bifurcation
point Ay = A2 = .1135. (b), (c) Corresponding solution curves to stable
points.

homotopy function

Hi(v,)) = (ver — MVee)/RC + (ver — vbo)/RB
+ :icl(vbl,vcl)

Hy(v,\) = (vby — vea)/RB + b1 (vb1,ver)

H3(v,)\) = (vea — AaVee)/RC + (vea — vby)/RB
+ chz(vbz,vcz)

Hy(v,\) = (vby — vey)/RB + iby(vby, veg)

where ic; = I(e*%/" — 1) — I,/a,(e@bi—vedd/ve — 1),
iby = —ic; — (—Is/ag(e/" — 1) + I(e(bsmved/ve — 1)),
ay = 0945, I, = 1071, v, = 0.025v, a, = 0.65, and
with node voltages v = (vcy,vby,vep, vby) and parameters
A = (A1, A2). This function was obtained from the single-
parameter voltage continuation in [10] by converting A in the
first and third equations, which multiply the voltage source,
into two independent variables.

Fig. 14(b) and (c) shows the solution trajectory obtained
by tracing a clockwise half-circle path in the real parameter
plane around the bifurcation point A\; = Ag = 0.1135, shown
in Fig. 14(a). As discussed in the polynomial example, a
stable solution is accessed and the bifurcation point is avoided.
Because of symmetry, a counterclockwise half-encirclement of
the bifurcation point leads to the other stable circuit solution.

A complex 2-parameter homotopy function may be obtained
from the same single-parameter homotopy function by letting
A be complex in the above equations (A = Ay = A +
1X;). Fig. 15(b) and (c) show the bifurcation-free solution
trajectories obtained by a half-circle excursion in complex
parameter space [Fig. 15(a)]. Fig. 15(c) shows a blow-up of
the excursion in the complex domain. As expected, the central,
metastable solution is accessed at the end of a bifurcation-free
path.

V. FINDING MULTIPLE SOLUTIONS

Homotopy methods have been applied to the task of find-
ing multiple dc solutions of nonlinear circuits, a potentially
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Fig. 15. Complex two-parameter homotopy is used to access the central,
metastable solution branch (A} = A2 = A, +1A;): (a) Path through complex
parameter space avoiding the bifurcation point. (b) Associated solution paths
to the metastable branch, real except for region inside of circle. (¢) A blow up
of the complex solution path around the bifurcation point [blow up of circle
shown in (b)].

Fig. 16. Extended curve following. Illustration of disconnected solution
branches.

valuable feature of a circuit simulation program. Most contin-
uous, single-parameter homotopy methods for finding multiple
solutions of nonlinear circuits take either a multiple starting
point or an extended curve following approach. The multiple
starting point approaches involve choosing a number of points
to serve as initial values of continuation paths, corresponding
either to an ‘easy’ starter system with multiple solutions, or to
numerous starter systems with different, unique solutions. In
either case, all the paths are then followed to circuit solutions
at A = 1. Since for some homotopies, paths may diverge to
infinity, meet at a fold or at a bifurcation point, or lead to the
same solution, these methods may not find all real solutions,
and can be inefficient.

The extended curve-following approach, also called Lambda
Threading [7], [9], [10], follows a single solution path past
A = 1 in the hope that the curve will reverse direction and
pass through A = 1 multiple times. This method may fail to
find all solutions if the path followed does not pass through all
solution points [9], as illustrated in Fig. 16. For example, the
single parameter homotopy function in Example 1 (the tunnel
diode circuit) produces solution curves that pass through a
number of solution points that depend on the starting point vg.
Though the solution curve beginning at vy = (v1,v2) = (3,0)
passes through all nine solutions [9], Fig. 7 shows a curve,
stemming from vo = (0,0), that passes through only five
solutions.

We focus on multiparameter versions of the extended curve
following approach. We address the question of whether
adding extra homotopy parameters opens up the possibility of
finding all solutions of an arbitrary circuit. Since a fundamental
problem with the extended curve following approach is the



presence of real disconnected solution branches, we are inter-
ested in the potential of multiparameter methods for joining
disjoint branches. That is, given a real, single parameter homo-
topy function with disconnected solution branches, can adding
or complexifying parameters result in a completely connected
solution manifold that, in principle, can be navigated from
solution point to solution point until all circuit solutions are
found? Also of interest, if solution surface connectivity results
are to lead to practical algorithms, is how these paths might
be traced.

This section concentrates on complex parameter homotopy
as applied to the extended curve following approach. This
work complements work found in [13] and [14], in which
it was observed that complex solution excursions can lead to
otherwise inaccessible real solution branches. Essential to this
discussion is the notion of an irreducible analytic homotopy
function, and its complex solution structure [18], [19]. As
previously discussed, an analytic equation H(z,A) = 0 is
reducible if it may be written in product form H(z,\) =
P(z,\)Q(z, ) = 0, so that the roots of H are the union
of the roots of P and (), both analytic functions in = and A
passing through zero. The equation H (z, \) = 0 is irreducible
if it is not reducible, and a system of equations H(z,\) = 0,
H:C™ x C — C", is irreducible if each h; is irreducible,
where H = [hq, ho,...,h,]’, and if, as in Bertini’s theorem,
the intersection of the functions h; are generic.> For example,
z2 — 2\ = 0 is irreducible, as is e (ag + a121 + agwy +
<o+ anzy,) = 0, because the former function does not factor
into the product of two analytic functions, while the latter
function only factors into the product of a polynomial and an
exponential, an analytic function which does not pass through
zero called a unit. However, the solution set of  — 2332 = 0
reduces to the product of the solution sets of ac% — 222 =0
and x% + 22X = 0.

Appendix B details the statement and proof of the following
proposition of [19, p. 21].

Proposition: An analytic variety V is irreducible if and only
if V* is connected, where V* is the locus of smooth points
of V.

Simply put, the proposition indicates that the complex
solution set of an irreducible system of equations H (z, A\) = 0,
H:C" x C — C™, which takes the form of a number of
surfaces above a neighborhood of each regular point J, is
connected over the complex parameter plane. This means
that given an irreducible, analytic homotopy function H with
a complex parameter A, there exist regular paths through
the complex parameter plane connecting any solution x; of
H(z,)) = 0 to any other solution z3 of H(z,\) = 0,
provided ) is a regular parameter value. A consequence
of this solution manifold connectivity, in conjunction with
the codimension two bifurcation sets in complex parameter
space, as discussed in Section III, is that complex parameter
homotopy methods have the potential for finding all solutions

3We assume that the equations h; and hg intersect generically, as in
Bertini’s Theorem on page 8 of [20]. An example of what we do nor expect,
two irreducible equations that intersect in a nongeneric way, is 1 — 22X = 0
and z; = 0. Though each equation is irreducible, the intersection of the two
equations is z2 A = 0, a reducible equation.
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Fig. 17. (a) The solution topology of the function H(z,A) = z°
—Az + .1 = 0. Note disconnected paths. (b) The three finite branch points
of H(z,A) = % — Az + .1 = 0, evenly distributed ona circle of radius
0.4072, and branch cuts A, B, and C.

of nonlinear circuits via regular paths. We list this consequence
in the following result.

Result 5: Complex parameter homotopy methods can, in
principle, find all solutions of a circuit modeled by analytic
functions, without passing through folds or singular points.

Because exponential, sinusoidal and polynomial equations are
all analytic, the class of circuits that Result 5 applies to is
large, allowing for many standard diode and transistor models.
An obvious question is how easy or difficult it is to design
an irreducible homotopy function. While in general it may
be difficult to determine whether an arbitrary multivariate
function is irreducible, it is significantly more straightforward
to deliberately design an irreducible embedding. For example,
given any function f(z) = 0, f:C™ — C, either reducible
or irreducible, the embedding h(z,A) = f(z) + A is an
irreducible homotopy function. And with some thought, many
other irreducible homotopy functions can be designed as well.

To summarize this section so far, assume that the dc
operating points are defined as being the real solutions of the
analytic circuit equations

F(z)=10 (6)
where F: C™ — C™. Then the homotopy function
H(z,\)=0, H:C"x C — C" )

with each h;(x, ) irreducible and generically intersecting, and
H(z,A*) = F(z) at some \* € C has a complex solution
space that regularly connects all d¢ operating points.

Now that results from algebraic geometry have been in-
voked to establish that solution manifolds are regularly con-
nected in complex space, and thus are navigable from solution
surface to solution surface, we move on to explore the nature
of this connectivity and how it might be exploited to join real
disjoint solution branches and to find multiple circuit solutions.
We revisit the third order polynomial H(x, Ay, X)) = 3 —
A1Z + Ao = 0 discussed in Section IV to illustrate the nature
of solution-surface connectivity, and to provide an example of
complex solution paths joining real disjoint solution branches.

Complex Solution Surface Connectivity: Joining Real Dis-
Jjoint Solution Branches: The polynomial H(z,)\) = z3 —
Az + b, with real, fixed, nonzero b, is a simple example
of an irreducible homotopy function with disjoint solution
branches. As shown in Fig. 17(a), the homotopy function
H(z,A) = 2> - Az +.1 = 0 (b = .1 for the remainder of
the discussion) has two real disconnected branches, a simple
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Fig. 18. (a) Revolution in the complex parameter plane encircling one branch point and passing through branch cut A. (b) Closed solution trajectory from
x1 corresponding to path in (a). (c) Solution trajectory from @3 to 2 corresponding to path in (a). (d) Solution trajectory from x2 to 3 corresponding to
path in (a). (¢) Revolution in the complex parameter plane encircling three branch points. (f) Solution trajectory from z1 to z3 corresponding to path in (e).
(g) Closed solution trajectory from x> corresponding to path in (e). (h) Solution trajectory from 23 to x; corresponding to path in (e).

curve and a fold. If one were interested in finding all solutions
of H(z,0.5) = 0 from the real solution of H(z,—1) = 0,
zo = —0.099, using real extended curve following, one would
come to the erroneous conclusion that H(z,0.5) = 0 has
a single real solution at zy = —0.791. However, Result 5
indicates that there exist paths through complex parameter
space that regularly join the two real, disconnected branches.

In fact, if after finding the solution z; = —0.791 we make
A complex and trace a full circle in complex parameter space
starting from A = 0.5, with center A = 0.5 — 7 and a radius
r > 0.45 [shown in Fig. 18(e)], the corresponding complex
solution trajectory [shown in Fig. 18(f)] follows a path from
z1 = —0.791 to a solution residing on the folded, disconnected
branch, 3 = 0.569. From there, the solution z, = 0.222 may
be easily found, either by following the real folded solution
path or by performing another complex-parameter branch point
encirclement. That way, all three solutions are found instead
of just the one on the simple, disconnected branch.

Solution manifold connectivity, for this example and for any
parameterized analytic system of equations, can be understood
in terms of the existence and positioning of branch points
and branch cuts. A regular point A has a neighborhood,
above which, the solution structure takes the form of a set
of manifolds. A branch point is a parameter value A € C' at
which a complex-parameter homotopy function H(z,)) = 0
has repeated roots. As such, the branch points correspond
to parameter values where one or more solution manifolds
contact each other. In our polynomial example H(z,\) =
23— Az +.1 = 0, there are three manifolds above each regular
point, and four parameter values corresponding to repeated
roots: A = 0.4072, A = 0.4072¢*>7/3, A = 0.4072¢*"/3, and
A = 00. The three finite branch points, shown in Fig. 17(b) and
superimposed on the complex parameter paths illustrated in
Fig. 18, were derived by solving the simultaneous constraints
H(z, ) = 0 and the repeated root condition D, H(z, ) = 0,
for A. They correspond to double roots of H(z,A) = 0.
Each of these three finite branch points locally connects two

of the three solution manifolds in such a way that tracing a
small closed curve through complex parameter space around
a single branch point will result in a solution trajectory from
one manifold to another. For example, a closed path around
the branch point A = 0.4072 with A = 0.5 as a starting point,
as shown in Fig. 18(a), traces a solution path from x> to x3,
or vice versa, as shown in Fig. 18(c) and (d).

Now that branch points have been explained and iden-
tified for our polynomial example, we move on to branch
cuts. A branch cut is a nonunique curve through parameter
space with finite or infinite branch points at the endpoints,
symbolizing a connection between solution manifolds. Branch
cuts for our polynomial example are shown in Fig. 17(b),
and superimposed on Fig. 18(a) and (e). Assuming that the
solution point x; is locally identified with solution surface 1,
and that solutions z5 and z3 are locally identified with solution
surfaces 2 and 3, respectively, branch cut A connects surface
2 to surface 3, branch cut B connects surface 1 to surface 2,
and branch cut C connects surface 1 to surface 3. Each is a ray
connecting a finite branch point to the infinite branch point.

The location of branch points and branch cuts determine
solution surface connectivity, and thus the set of paths that
will connect a solution of H(z,\') = 0 (X fixed) to any
other solution of H(z,)') = 0. One way of thinking about
(and keeping track of) the movement of a solution path
from solution manifold to solution manifold as the complex
parameter is varied, is as a sequence of permutations in
the ordering of solution manifolds, signaled by branch cut
crossings. For example, a simple closed cutve in complex
parameter space through branch cut A, as shown in Fig. 18(a),
will result in a change of solution ordering, from (1,2,3)
to (1,3,2), because A joins surfaces 2 and 3. As shown in
Fig. 18(c) and (d), the corresponding solution path starting at
zo will lead to z3, while one starting at z3 will lead to z2. If a
solution path were started at 1, it would stay on surface 1 and
not lead to a new solution, because no branch cut connecting
solution surface 1 to another solution surface was crossed.
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Similarly, a simple closed path in complex parameter space
encircling all three finite branch points and crossing all three
branch cuts, like the one shown in Fig. 18(e), permutes the
solution surface ordering from (1,2,3) to (2,1,3) to (2,3,1) to
(3,2,1), because branch cuts B, C, and then A are crossed. The
net permutation is from (1,2,3) to (3,2,1) (with corresponding
solution paths from (z1, 22, z3) to (23,22,21)). Such a path
through parameter space will lead from solution z; to z3,
or from z3 to x;, but cannot lead to a new solution if z»
is a starting value, as illustrated in Fig. 18(f), (g), and (h).
Associated solution paths for any other curve through the
complex parameter plane may be analogously predicted, given
our knowledge of the existence and positioning of branch
points and branch cuts for this example.

Next, we present a branch point encirclement experiment on
the tunnel diode circuit in Example 1 with nine real solutions,
only five of which are accessible using ordinary extended
curve following from the starting value vy = (0, 0).

Circuit Example 4 (Tunnel Diode Circuit Revisited): A sim-
ple algorithm that involves tracing noninfinitesimal closed
curves in complex parameter space with A = 1 as an endpoint
was found capable of finding all circuit solutions efficiently on
several examples, even from solution branches of homotopy
functions that do not pass through all solution points (disjoint
branches as in Fig. 16). To illustrate, we return to the tunnel
diode circuit in Example 1 and step through the procedure.

First, we traced the real solution curve of H(v, A) = 0 from
vo = {v1,v2) = (0,0) at A = 0 to a solution of the circuit, v =
(0.228,0.827) at A = 1. Instead of continuing along the real
solution curve to find the next solution, as one would in a real,
single-parameter extended curve following algorithm [9], we
made A complex and traced a full circle in complex parameter
space starting from A = 1, with center A = 1 4 r; and radius
r1 [see Fig. 19(a)]. If the circle traversed intersects a branch
cut and contains a branch point, the revolution in complex
parameter space can result in a fold-free solution path from the
initial solution v = (0.228,0.827) to another circuit solution.
For instance, v = (0.219,1.673) is reached when a circle of
radius r; = 0.2 is traversed in complex parameter space. The
corresponding solution trajectory is shown in Fig. 19(b).

To find yet another solution, we traced a circle in complex
parameter space starting at A = 1 with center A = 1 — ry [see
Fig. 19(c)], and followed a curve from the second solution v =
(0.219,1.673) to a third solution v = (0.199,3.754) (ry =
0.25). Continuing in this manner, from solution to solution,
alternating the center of parameter revolution between 1 + r
and 1 — r, we were able to find all solutions of the circuit,
even though we used a homotopy function with a real solution
curve passing through only five solutions. With the simplest
of schemes—no predictor and only a Newton corrector—we
calculated each of the nine solutions (except the first) in under
15 steps (as opposed to hundreds), with an average of two
corrector iterations per step.

This example suggests that the complex solution surface
connectivity discussed in this section could prove useful
for connecting real disjoint solution branches and efficiently
finding all solutions of nonlinear circuits. The topic of devel-
oping ways of exploiting this global connectivity property in

Imag()) Imag(v)

Real()) vy

c) d)

Fig. 19. (a) First revolutionin complex parameter space. (b) Corresponding
solution trajectory from v = (0.228,0.827) to v = (0.219,1.673). (c)
Second revolution in complex parameter space and (d) Corresponding solution
trajectory from v = (0.219,1.673) to v = (0.199,3.754).

complex space, for example by designing homotopy functions
that force all circuit solutions to be locally connected in a
single algebraic element at infinity, is explored in [26], [24],
and [25].

VI. CONCLUSION

In this paper we introduced real and complex multipa-
rameter homotopy methods for solving nonlinear circuits,
and explored their potential for avoiding folds and bifurca-
tions along solution paths, and for finding multiple solutions.
Generic folds, we learned, are real double roots occuring
at generic fold values. We showed, using arguments from
algebraic geometry, that in general no number of added real
parameters can lead to fold avoidance, but that generic folds
may be efficiently avoided by complexifying the homotopy
parameter and tracing a closed curve in complex parameter
space around the the critical fold value.

Real bifurcations are characterized by a drop of rank in the
extended Jacobian DH, » and nongenericity. When encoun-
tering a real forked bifurcation along a homotopy path, real
2-parameter homotopy was shown to be useful in avoiding
the bifurcation point and accessing the two outer solution
branches, while complex parameter homotopy was shown ca-
pable of accessing the central solution branch without passing
over a fold. Local ¢ half-circle excursions through parameter
space (signaled by a drop in the rank of the Jacobian D, , H)
were found sufficient to accomplish this avoidance.

We also explored the potential of complex parameter homo-
topy methods for finding all circuit solutions, and found that in
principle, at least, such methods have the potential for finding
all solutions. This potential exists because complex solution
manifolds are connected over the complex parameter plane.
That is, given an irreducible, analytic homotopy function
H with a complex parameter ), there exist regular paths
through the complex parameter plane connecting any solution
of H(z,\") = 0 to any other solution of H(x,\') = 0.
Solution manifold connectivity was explained in terms of the
location of branch points and branch cuts. All solutions of
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two example systems, a circuit and a polynomial, were found
efficiently using branch point encirclement from homotopy
functions with real disconnected branches. Though a path
through parameter space leading from one solution surface
to another must encircle a branch point and intersect a branch
cut, the location of which are generally not known apriori, ex-
periments suggest that complex solution surface connectivity
could prove useful in connecting real disjoint solution branches
and/or efficiently finding all solutions of nontrivial circuits. In
[26], [24], and [25] we exploit this global connectivity property
in complex space by designing homotopy functions that force
all circuit solutions to be locally connected in a single algebraic
element around infinity.

APPENDIX A
LYAPUNOV-SCHMIDT REDUCTION

Assume we are given a function H: ™ x Rk — R™,
H(z,\)=0 8)

with a bifurcation at the point (x¢, Ag), and an associated drop
of rank in the Jacobian D, H (xq, A) at the bifurcation point.
The goal is to find a simple way of locally characterizing
and studying this bifurcation. One way of doing this is the
method of Lyapunov-Schmidt [21], which involves changing
coordinates in the neighborhood of the bifurcation point and
reducing the problem of locally representing a bifurcation
to its smallest dimension. The dimension is that of the
null space of the Jacobian of H with respect to z at the
bifurcation point, D, H (o, o).

The idea behind this method, described in detail in [21]
and the references therein, is to create nonsingular matrices
[P,:U] and [P,:V], where U,V € R™*?, and p is the
rank deficit of the Jacobian D, H (zo,Ao). The matrix U
consists of basis vectors for the null space of D,H(Zo, o),
s0 DyH(xo,Ao)U = 0. The matrix V is chosen so that
VT D, H(x9,Xo) = 0. The matrix P, DyH(zo,Xo)Py is
nonsingular. Then (8) may be decomposed into

PTH(z,)\) =0 ©)
and
VTH(z,)\) =0 (10)

and z € R™ may be represented by z = F,w + Uq, with
w € R™~P and q € RP. Notice that the solution vector x
has been decomposed into two parts, one in the null space of
D, H(zg, Ao), and one in the range space of D, H (o, Xo) .
With this change in coordinates, (9) and (10) become

PlH(P,w+Ug ) =0
VITH(P,w+Ug ) =0

(1)
(12)
and if wo and qg are chosen so that zg = P,wo+Ugqy, then the
Implicit Function Theorem may be applied to (11) in the neigh-
borhood of the bifurcation point (wg, go, A¢) to get the function
w*(g, X), where wg = w*(go, Ao). This function, when substi-
tuted in (12), leads to the definition of a bifurcation function
N(g,A) = VT H(Paw" (¢, ) +Ugq,A) =0 (13)

of p equations in p unknowns characterized by N(qgo, Ao) =0
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and DyN(go, Ao) = 0. This function locally characterizes the
bifurcation. Since this paper is concerned with bifurcations
at which the Jacobian D, H(zg,)o) drops rank exactly
once, p = 1, the bifurcation function consists of a single
parameterized equation. Thus, in this case it suffices to
study a uni-variate parameterized equation that captures the
qualitative features of a bifurcation, even though the circuit
equations of interest are multivariate.

APPENDIX B
GLOBAL CONNECTIVITY PROPERTY OF ANALYTIC VARIETIES

Analytic Hypersurface: V is called an analyric
hypersurface if V is locally the zero locus of a single
nonzero analytic function f.

Analytic Variety: A subset V of an open set U C C™ is an
analytic variety in U if, for any p € U, there exists a neighbor-
hood U’ of p in U such that V N U’ is the common zero locus
of a finite collection of analytic functions fy,..., fix on U’.

Irreducible Analytic Variety: An analytic variety V C
U C C™ is said to be irreducible if V cannot be written as the
union of two analytic varieties V1, Vo ¢ U with V1, Vo # V.

The above definitions can be found on page 12 of [19]. The
following proposition may be found on page 21 of [19], along
with a proof for the case of a single analytic function, outlined
below. A more general proof may be found in the references
cited within [19].

Proposition: An analytic variety V' is irreducible if and only
if V* is connected. In the above proposition V* is the locus
of smooth points of V', meaning that the singular locus V has
been removed from V (V* =V — V).

Outline of Proof: = (if V' is reducible then V* is discon-
nected)

If V is reducible, then it is the sum of distinct analytic varieties,

meaning V = V; U V,, with V3,V; ;Cé V. Note that any
overlap between V; and V, will correspond to repeated roots
of analytic equations, and thus will belong to the singular set
of V (V4 N Va) C V). Since V* is the set V minus the
singular set V,, and any overlap between V; and V5 is part of
this singular set, V* is disconnected.

< (if V* is disconnected then V' is reducible)

1) Assume V* disconnected, with { V;} connected compo-
nents.

2) Take closure of each connected component, V;. The goal
is to show that V; is an analytic variety.

3) Use Weierstrass polynomials [19] to prove that V; is
the zero set of the analytic function fi(z) = 2% +
o1(2)2E"1 4 - 4 op(2'), 2 € €™, 53(0) = 0. This
proves that each V; is an analytic variety, and thus V/
is reducible.

Consequence of Proposition: The proposition states that ir-
reducible analytic varieties are regularly connected. The com-
plex solution set of a parameterized set of analytic equations
is an analytic variety. An example of such a variety is
the complex solution set of parameterized circuit equations,
where the circuit elements are modeled exclusively by analytic
functions like linear elements, polynomials, and exponentials,
and the parameter(s) also appear analytically.



838 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, NO. 10, OCTOBER 1996

If the parameterized circuit equations are irreducible, then
the complex solution space is connected. This means that if
one designs a homotopy function for finding dc operating
points of a circuit that is both analytic and irreducible, then
the solution space will be connected, and in principle one can
trace regular paths from circuit solution to circuit solution,
until all operating points are found.
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