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ABSTRACT

This paper applies real and complex multi-parameter homotopy
to finding periodic solutions of nonlinear circuits. We show, us-
ing circuit examples and normal forms coupled with codimension
arguments, that multi-parameter homotopy methods can avoid
period-doubling and cyclic fold bifurcations along solution paths,
and find all solutions along a period-doubling path. We dis-
tinguish between circuit-direct and formulation-indirect multi-
parameter homotopy, and show that the latter (with two real
parameters) can avoid period-doubling bifurcations, while the
former cannot.

1 INTRODUCTION

This paper focuses on the calculation of periodic solutions, both
stable and unstable, of circuits with periodically varying sources
and/or parameters (e.g. a switch), a problem of importance
in power electronics, control, and communication systems [1].
Commonly used methods for calculating periodic steady state
include forward integration for asymptotically stable solutions,
and locally convergent iterative Newton-based methods such as
shooting, finite differences (time domain), and harmonic balance
(frequency domain) [1]. However, these techniques may either
fail or become impractical for circuits with characteristics such
as multiple time scales and/or multiple solutions.

Recently, homotopy continuation methods, with their poten-
tially large or global regions of convergence, have been applied
to the calculation of periodic solutions of circuits [8]. The idea
behind a continuation method is to embed a parameter in the
circuit’s nonlinear algebraic-differential equations, or in the alge-
braic formulation associated with a shooting, finite difference, or
harmonic balance method. Setting the parameter to zero reduces
the problem to a simple one that can be solved easily, or whose
periodic solution is known. The periodic solution of the simple
problem is the starting point of a continuation path. The set
of equations is then continuously deformed into the originally-
posed difficult problem. The solution to the difficult problem is
obtained by tracing the corresponding continuation path through
solution space.

Varying a circuit parameter may result in qualitative changes
in system trajectories of the circuit, called bifurcations. Local
dynamic bifurcations of a periodic orbit include cyclic folds and
period-doubling bifurcations [11]. Local dynamic bifurcations of
periodic orbits can manifest themselves as folding and pitchfork-
bifurcating solution paths of algebraic homotopy continuation
formulations,

In this paper we apply the concept of real and complex multi-
parameter homotopy maps and methods, introduced in [7] for
finding DC operating points, to finding periodic solutions of non-
linear circuits. We explore their potential for avoiding cyclic fold
and period-doubling bifurcations along periodic-solution paths,
and for finding all solutions emanating from a period-doubling
path. Especially of interest is the case where this potential de-
pends on whether the homotopy transformation is applied di-
rectly to the circuit equations, or indirectly to the system of
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nonlinear algebraic equations derived from a finite difference or
shooting problem formulation. The concepts are illustrated on
normal forms, which are the lowest dimensional, simplest, poly-
nomial representations of bifurcating systems [11], and on two
circuit examples. We assume simple, isolated periodic solutions
in a compact region of state space.

2 MULTI-PARAMETER HOMOTOPY
A simple example of single parameter homotopy, a special case
of multi-parameter homotopy, is source stepping combined with
finite differences. In this case the homotopy transformation is
the scaling of all independent sources by a parameter ) € {0,1].
The original periodically varying state equations! & = f(z,t) =
f(z,t+T),f : R" x ® — R, describing the circuit are trans-
formed into the system i = h(z,t,)), where h(z,t,1) = f(z,t),
and the system = h(z,t,0) has a zero solution 2(t) = 0.

The parameterized two-point boundary value problem
2(t,A) = h{z(t,2),t,2),2(0,A) = 2(rT, A), (a periodic solution
with period rT, r€ Zt, is being sought) is then posed as a sys-
tem of algebraic equations via a finite differences formulation [1].
The system 2 = h(z,t, ) can be discretized by the trapezoidal
rule, for instance, into

t
2(tx) = z2(tk—1) + At/2{A(z(tk=1) th—1, A) + R(2(tk) tx, A)]

for k = 1,2.rN (N points every T seconds). Then, to con-
strain the solution to be periodic, we set z(tp) = 2(i,n), and
are left with a system of rN x n nonlinear algebraic equations
in N x n + 1 unknowns written H(Z,,)) = 0. The algebraic
equations H(Z, A) = 0 have a solution set consisting of curves,
theh characteristics of which will influence any curve tracing algo-
rithm.

A real m-parameter version of the above homotopy function
may be obtained by embedding a parameter vector A € R™
in the circuit, for instance by scaling different sources inde-
pendently. The vector-parameterized boundary value problem
2(t,A) = h(z(t, A),t,)),2(0, ) = 2(rT, A), when posed as a sys-
tem of algebraic equations H(Z5, A) = 0, has a solution set con-
sisting of locally m-dimensional solution surfaces, rather than
curves. Similarly, a compler parameter version results when A,
the scaling parameter, is made complex. In this case the solu-
tion surface will be locally 2-dimensional, consisting of real and
imaginary solution components.

We refer to the above approach to obtaining a homotopy func-
tion H, in which the time-invariant homotopy transformation is
applied directly to the circuit equations rather than to the al-
gebraic formulation of the boundary value problem, as circuit-
direct. Had we first formulated the boundary value problem
z = f(z,t),z(0) = z(rT), as a system of algebraic equations

(X) = 0, and then applied the homotopy transformation to
the algebraic system F(X) = 0 in order to obtain the homotopy
function, the approach would be termed formulation-indirect.

Since both circuit-direct and formulation-indirect multi-
parameter homotopy functions have solution surfaces rather than

solution curves, there are, if any, infinitely many solution paths

1 A state equation formulation is not necessary. The system
of algebraic differential circuit equations derived from modified
node analysis or some such method will work in all of the follow-
ing, with minor modifications.
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Figure 1: a) Poincaré map. b) CFB fixed point fold. c)
Complex CFB avoidance path for Example 2. d) PDB fork
in P%. e) Resoved PDB fork in P? (formulation-indirect).

leading from the initial, ‘easy’ problem to the final, difficult prob-
lem of interest, some of which may be better behaved than the
solution curves produced by the corresponding single parameter
homotopy. The next sections discuss the potential of real and
complex multi-parameter homotopy methods for avoiding cyclic
fold and period-doubling bifurcations of periodic orbits. The
question of whether the fold and bifurcation avoidance results of
[7) apply to finding periodic solutions, using circuit-direct and/or
formulation-indirect homotopy, is addressed.

3 AVOIDING CYCLIC FOLD BIFURCATIONS

At a cyclic fold bifurcation (CFB), two real periodic orbits,
one stable and the other unstable, coalesce and then ‘dissapear’
as a parameter embedded in the circuit equations is varied mono-
tonically. For example, the ferro-resonant circuit in Example 1
undergoes two cyclic fold bifurcations as E, the magnitude of the
sinusoidal forcing function, is varied from E = Q0 volts to £ = 140

volts.
A typical mathematical characterization of a CFB involves

the Poincaré map P, of a periodic orbit Z, and its eigenvalues,
called Floquet multipliers [11]. Conceptually, a Poincaré map is
obtained by placing an n — 1 dimensional hypersurface £ in ®"
'state space so that it transversally intersects the periodic orbit
Z exactly once (at p,), as shown in Figure 1a. The Poincaré
map Py : U — I sends points in the neighborhood of p) on £
(g € U) to the hypersurface T for a first return that matches the
system flow. For a periodically forced system, this amounts to
sampling the system flow every T seconds.

Since the point py € £, is a fixed point of the map P, (p) =
Px(px)). the eigenvalues of the linearization of Py at p,, o; €
o(DPjy(pa)), reflect the stability of the fixed point py and its
corresponding periodic orbit Z, and determine the occurence of
a bifurcation. As long as no eigenvalueis on the unit circle (|o,] #
1,Vi), the periodic orbit Z, is hyperbolic and non-bifurcating.
However, when |o,| = 1, the periodic orbit undergoes some type
of bifurcation. .

A cyclic fold bifurcation corresponds to a single eigenvalue
a; € o(DP,) passing through +1 transversally. At the bifurcat-
ing parameter value, the matrices D Py (py) — I and Dy Py(p)
drop and maintain rank, respectively, and the solution curve of
fixed points p, folds, as shown in Figure 1b. We assume that
once formulated as a parameterized system of algebraic equa-
tions, the periodic-solution finding problem will, for a fine enough
discBretization, have folding solution paths mirroring any existing

S.

Since the topic of fold avoidance for multi-parameter homo-
topy applied to calculating DC operating points was discussed in
[7], we address the question of whether there is any qualitative
difference, either in real or complex space, between the solution
folds one finds in ordinary parameterized systems of algebraic
equations, and those that appear in algebraic formulations of
two-point boundary value problems as a circuit parameter is var-
ied, reflecting cyclic fold bifurcations. If not, results that apply
to fold avoidance in the DC problem {7] will apply to fold avoid-
ance in the periodic-solution finding problem, and there will be
no difference between circuijt-direct and formulation-indirect ho-
motopy. We demonstrate that the two are locally equivalent.

To show this equivalence, we compare bifurcation normal
forms and codimensions. The normal form, or simplest, one di-
mensional representation of the Poincaré map r44; = Py(z)) in

Figure 2: a) Ferroresonant circuit. b) Three periodic orbits
at AE = 100V. c) Folding solution path. d) Real com-
ponent of periodic orbit path vs. Real(1). e) Imaginary
component of periodic orbit path vs. Real(}).

the neighborhood of a CFB, is zx41 = 74 + z‘i + A [11], which,
for the fixed point rx4; = zx = p,, is identical to the normal
form of the static, generic DC operating point fold discussed in
[7}, H(z,A) = 22 + X = 0. Both sources of folds are locally codi-
mension one, meaning that a single constraint plus transversality
(an eigenvalue passing transversally through +1 for a CFB, and
a transversal loss of rank of the jacobian D H(z, A) for the static
bifurcation case) locally characterizes their presence. Thus, lo-
cal results and reasoning that apply to one apply to the other,
regardless of whether the homotopy function is circuit-direct or
formulation-indirect. We now restate a local version of the re-
sults of [7] in the context of periodic orbit tracing and present a
circuit example.

Result 1: Real multi-parameter homotopy, applied either to a
circuit-direct or a formulation-indirect homotopy function,
generally cannot avoid cyclic fold bifurcations by locally ma-
xé?lgering around the parameter value corresponding to the

Result 2: Complex parameter homotopy, applied either to a
circuit-direct or a formulation-indirect homotopy function,
can avoid cyclic fold bifurcations. Generally, folds may
be avoided by tracing a closed curve in complex parame-
gel.r‘ gpace around the parameter value corresponding to the

To briefly summarize the reasoning detailed in (7], Results 1
and 2 are based on codimension and normal form arguments.
Since folds are codimension one in real parameter space, and
codimension two in complex parameter space, adding real pa-
rameters to a homotopy function cannot lead to fold avoidance,
but complexifying a parameter can lead to fold avoidance. Ex-
amining the normal form of a fold, H(z,)) = z2 + A = 0,
reveals that tracing a full circle in complex parameter space
A = €'®,80 = 0: 27, around the fold point A = 0 leads to a
regular path from z = \/¢ (on the manifold z = V) to z = /¢
(on the manifold z = —/}).

Circuit Example 1: The ferroresonant circuit shown in Fig-

ure 2a has state equations
(Re+Rs)in = —q1/C1+ Rsg(d2) + ea(t)

(Re+ Rs)¢2 = —Rsqi/c1 — R4Rsg(¢2) + Rses(t)
with nonlinear inductor characteristic i2 = g(¢2) = aé2 + b3
and a sinusoidal forcing function ei(t) = Ecoswt. For the
state vector z = (q1,¢2) we refer to the above state equations
as £ = f(z,t). A circuit-direct, real, single parameter homo-
topy function is obtained by scaling the magnitude of the forc-
ing function e3(t) in f(z,t) by a real parameter A\. The newly
parameterized state equations # = h(z,t,A) are then formu-
lated, via finite differences with period 27 /w (see Section 2),
as a parameterized algebraic system of equations H(Z,,\) = 0,
where Z, is the N-point discretized T-periodic solution £, (-) of
#(t, A) = h(z2(t,1),,1);2(0,A) = 2(rT, ). The folding solution
pathof H(Z,, A) = 0, corresponding to values of AE at which the
circuit has first one, then three, and then one T-periodic solution
{10}, is represented in Figure 2c for the circuit values Ry = 500,



Rs = 10Q, C; = 1.694F, E=100V, (a,b)=(0.03,0.174) and N=40
sample points. The three orbits at E=100V are illustrated in
Figure 2b.

A complex parameter homotopy function is obtained from the
real homotopy function H(Zy,A) = 0 by making the parameter,
and thus the solution vector, complex (A € C). Figures 2d,e show
the smooth, fold-free complex solution path (real and imaginary
parts of the solution as a function of the real part of A ) from
the middle, unstable periodic solution Z;{-) to the outer, stable
periodic solution Z3(-) at AE = 100 obtained by tracing a full
circle in complex parameter space around the CFB point, as
shown in Figure 1c. The middle, unstable periodic orbit Z2(-)
was obtained in the same manner from #; (-) by tracing a complex
solution curve around the fold point AE = 110V. &

4 AVOIDING PERIOD-DOUBLING
BIFURCATIONS

At a period-doubling bifurcation (PDB), the variation of a cir-
cuit parameter causes a stable mT-periodic solution to become
unstable just as two stable 2mT-periodic solutions, mT-shifted
versions of each other, are created. In the above description, T
is the fundamental period of the periodic forcing function in the
circuit, and m is a positive integer.

As with the cyclic fold bifurcations discussed in Section 3,
Poincaré maps and their eigenvalues are used to characterize pe-
riod doubling bifurcations. Given a Poincaré map Py of a stable
periodic orbit # of period mT with a fixed point p\ € &3, the
periodic orbit #5 undergoes a period-doubling bifurcation if a
single eigenvalue o; € o(DpPx(p»)) passes transversally through
-1 (0; = —1,80,/8X # 0). As this eigenvalue passes through the
unit circle, the fixed point pj reverses its stability, going from
stable to unstable as o; exits the unit circle. Simultaneously, the
second return map Pz undergoes a fork bifurcation, in which the
single fixed point py splits into three fixed points, px, ¢, and
r, with 75 = Pa(ga), ga = Pa(r1) and px = Py(pa), as shown
in Figure 1d. The fixed point p) is a point on the now-unstable
period-mT orbit Z,, while the emerging fixed points rj and g,
are mT-separated points on the emerging stable period-2mT or-
bit §x.

Analogously, if the periodic solution finding problem is posed
as a system of algebraic equations with rT = mT, say via finite
differences or shooting (see Section 2), a smooth well-conditioned
solution path approximating Z, exists through a range of pa-
rameters including that at which the circuit period doubles. The
orbit becomes unstable, but this is not reflected in a static bifur-
cation of the algebraic system. This is analogous to tracing the
fixed point py = Py(pa) as A is varied. However, if one traces
the discretized approximation of the period-mT solution £ with
r = 2m in the algebraic formulation, a fork bifurcation occurs
near the parameter value at which the circuit period-doubles.
This is like tracing the fixed point px = PZ(py) as A is varied.
We say ‘near’ rather than at the PDB point because we assume
that they only coincide as k, the discretization increment, goes
to zero.

A real, single parameter homotopy algorithm encountering a
fork bifurcation point will either fail when the jacobian of the ho-
motopy function drops rank (unlikely because of sampling and
finite precision) or suffer from ill-conditioning in the neighboring
region and likely continue along the center branch of the fork
corresponding to the unstable period-mT solution. We discuss
whether real and/or complex multi-parameter methods, either
circuit-direct or formulation-indirect, can avoid the fork bifur-
cations engendered by period-doubling bifurcations, and, if so,
whether all stable and unstable emerging periodic solutions will
be accessible.

Since the topic of fork bifurcation avoidance for multi-
parameter homotopy applied to calculating DC operating points
was discussed in [7], we address the question of whether there
is any qualitative difference, either in real or complex space, be-
tween the forks one finds in ordinary parameterized systems of al-
gebraic equations, and those that occur in algebraic formulations
of two-point boundary value problems as a circuit parameter is
varied through a period-doubling bifurcation. As will be shown,
the answer is yes. Thus, while the discussion and results in (7]
on the topic of fork bifurcation avoidance in real and complex
space can apply to the periodic solution finding problem when
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parameters are chosen in a formulation-indirect manner, they do
not apply when parameters are chosen circuit-direct.

The idea behind this distinction is that a circuit-direct formu-
lation inherits the bifurcation set characteristics of the boundary-
value constrained dynamical system ( p) = Pi (pa) in this case),
while a formulation-indirect homotopy function may be chosen
to have a bifurcation set that resembles that of the static prob-
lem explored in [7]. Since these bifurcation sets can have fun-
damentally different properties in the neighborhood of a given
bifurcation, as they do at a period-doubling engendered fork,
bifurcation-avoidance potential and methods are formulation de-
pendent. A summary of results follows.

Result 3: Real 2-parameter homotopy, applied to a
formulation-indirect homotopy function (rT = 2mT in Sec-
tion 2), can be used to avoid a PDB point and trace the
emerging stable period-2mT orbit. It cannot be used to
access the continuing unstable period-mT orbit beyond the
PDB point without passing through a bifurcation.

Result 4: Real 2-parameter homotopy, applied to a circuit-
direct homotopy function (7T = 2mT), cannot be used (via
¢e-perturbations) to avoid a PDB point and trace either the
emerging stable period-2mT orbit or the continuing (unsta-
ble) period-mT orbit.

Result 5: Complex parameter homotopy, either circuit-direct
or formulation-indirect (rT = 2mT), can be used to avoid
the PDB point and trace the continuing (unstable) period-
mT orbit.

We illustrate the difference between the bifurcation avoidance
potential of circuit-direct and formulation-indirenct homotopy
on the quadratic map zx41 = Pa(zx) = Azx(1 — zi), a simple
dynamical system considered representative of generic period-
doubling phenomenon [10]. At A = 3, the eigenvalue of the
linearized map ¢ = A1 — 2zp) passes through -1, causing the
equilibrium point 9 = 1 — 1/) to period-double. This period-
doubling shows up as a fork bifurcation of an equilibrium point of
the second return map P2, which can be algebraically formulated
as the two equations Arg(1—z¢)~z; = 0and Az (1-z;)—x0 =0
after setting ro = r2.

We obtain a real, two parameter circuit-direct (map-direct, in
this case) homotopy function by first embedding an extra param-
eter in the quadratic map to get Tx41 = P, ,a; = A1Zx = ,\21:';:,
and then setting z¢ = T2 to get the equations hy (zo, 1, A1, A2) =
Mzg=A2zZ—z1 = 0and ha (70,71, M1, A2) = izy~Apzd -z =
0. The equilibrium point zp = z; = (A; = 1)/A2 will still
fork-bifurcate as a path is traced through parameter space from
A Ay = 3 —¢€ to X A2 = 3 + ¢, regardless of how
that path is chosen. This is because the eigenvalue of the lin-
earized map, ¢ = A; — 2)270, passes from ¢ = -1 + ¢ at
M =X =3—-¢ctoog = —-1—cat \y = A = 3+ ¢ while
remaining on the real line, and thus must pass through -1. Also
notice that varying Ay and Ay at different rates (A1 # A2) does
not disrupt the symmetry associated with a fork bifurcation,
h1(Zo,z1, A1, A2) = ha{z1, %0, A1, A2).

This reasoning generalizes to an arbitrary number of circuit-
direct embedded real parameters in an arbitrary dyamical sys-
tem exhibiting a generic period-doubling bifurcation, because the
scalar constraint o; = —1 forms a locally codimension one set in
real parameter space, and thus cannot be locally circumvented
(Result 4).

A real, two parameter formulation-indirect homotopy func-
tion may be obtained for the quadratic map by first writing the
period-two finding problem as a system of algebraic equations,
and then embedding independent parameters in each equation to
get hy(xo, 71, 1) = Mzo(l = zo) — x1 = 0 and hz(zo0,21,A2) =
A2z1(1=1z3)—zo = 0. Notice that at Ay = A2 = 3 thereis a fork
bifurcation, but, unlike the circuit-direct case, if A\; # A, there
can be no fork bifurcation. To see this, one can derive the com-
posed map Py, o Py, and observe that it can be reduced to the
form of the codimension-two (locally perturbable) ‘ordinary’ fork
discussed in {7]. Observe that in this case varying X; and X; at
different rates (A1 # A2) results in a break of the symmetry asso-
ciated with a fork bifurcationi.e., hy (zo, z1, A1) # h2(z1,z0, X2).
A path traced through the real parameter plane avoiding the bi-
furcation point A; = A2 = 3 will lead from the equilibrium point
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Figure 3: a) Parameter path in (b) leads from a 2T- to a
4T-periodic solution. b) Path through real parameter space
around PDB. c) Parameter path (d) leads from a stable
2T- to an unstable 2T-periodic solution. d} Path through
complex parameter plane around PDB.

o = 1 at Ay = Ay = 2.9, to the emerging period two orbit, for
instance (zq,z1) = (0.7646,0.5580) at A\; = A = 3.1.

Once again, the above reasoning generalizes. A formulation-
indirect homotopy function gives rise to ordinary pitchfork bi-
furcations, which have codimension two bifurcation sets (two
constraints locally define the set of parameter values at which
the homotopy function fork-bifurcates). Thus, perturbing a
formulation-indirect homotopy function around the real parame-

ter vector value at which the fork bifurcation occurs resolves the
fork into a smooth regular curve leading from Z, a mT periodic

circuit solution, to ¢y, a 2m7T periodic circuit solution, and a
fold, as shown in Figure le and Figure 3a for Example 2.

The circuit interpretation of the real perturbation required to
resolve the period-doubling induced fork (as in Figure 1e) is that
it must take the form of an ¢ magnitude periodic source added to
the circuit with a fundamental period of 2mT rather than mT, in
order to destroy the symmetry of the problem. Such a perturbed
circuit will have no periodic solution with a period less than 2mT
in the neighborhood, and so cannot period double.

Complex parameter homotopy may be used to avoid the fork
bifurcation and continue tracing the mT-period solution. This is
a consequence of the codimension two bifurcation set in complex
parameter space, and a local separability of the quadratic and
linear terms in the fork normal form. In our quadradic example, a
path through complex parameter space around A\; = A2 = 3 may
be used to avoid the bifurcation point and access the equilibrium
point on the other side of the bifurcation, for either homotopy
function. See [7] for a discussion of complex bifurcation avoid-
ance and an explanation of why the unstable periodic orbit is
not accessible {via a regular path) using real homotopy (Result
3). Example 2 further illustrates this section’s results.
Example 2:

The equation § + kZsiny = Asinwt describes the evolution
of the forced oscillations of a pendulum. For the state vector
2z = (y,9), we refer to the corresponding parameterized state
equations as ; = f(z,t,A). With w = 1.3 and k = 1, this sys-
tem undergoes a period-doubling bifurcation sequence as A is
decreased (see [12] for a full bifurcation diagram). For exam-
ple, at Ap4p = 1.8, a stable 2T-periodic solution period-doubles
to to a stable 4T-periodic solution and an unstable 2T-periodic
solution (T = 27 /w).

Figure 3a represents a regular, bifurcation-free solution path
of a formulation-indirect, real, 2-parameter homotopy func-
tion H(Z;,/-\) = 0, leading from the 2T-periodic solution at
X = Apgp— to the 4T periodic solution at A = Apgp4 as the
the path through real parameter space shown in Figure 3b
is traced. The homotopy function H(Z;,)A) = 0 is obtained
by letting A = f(z(tk—1) tk—1,21) for 0 < tx < 2T, and
h= f(2(tk—1),tk~1,A2) for 2T < tx < 4T (see Section 2}, which
is equivalent to an e-4T-periodic time-varying parameter vec-
tor perturbation around Apgp. For our simple, Newton-corrector
path-following simulations we chose N = 60 and ¢ < 0.3

Had we chosen a time-invariant circuit-direct homotopy func-
tion, the fork bifurcation would not have been avoided. With the
complex parameter homotopy function obtained by complexify-
ing A in H(Z,\) (\1 = A2 € C), a path through complex param-

eter space shown in Figure 3d traces a regular complex solution
path around the fork bifurcation and leads to the now unstable
period-2T orbit at A = Apgp4 (Figure 3c). &

5 SUMMARY/CONCLUSION

This paper illustrates an approach to reasoning about homotopy
transformation choice and path-tracing potential. This approach
is based on an analysis of and a comparison between the bifur-
cations arising in dynamical systems and those that generically
occur in relatively unstructured systems of parameterized alge-
braic equations, such as those found in the DC operating prob-
lem. To summarize, we have found that two homotopy parame-
ters (not more), one real and one complex, are enough to ensure
the existence of smooth, regular, cyclic fold and period-doubling
bifurcation-free periodic-solution paths. In general, no number of
added real parameters, in either a circuit-direct or a formulation-
indirect homotopy function, can avoid a cyclic fold bifurcation,
but a full circle in complex parameter space around the param-
eter value corresponding to the CFB results in fold avoidance.
For a formulation-indirect homotopy function, a half-circle -
excursion in real parameter space around the period doubling
bifurcation point will trace emerging stable cycles, but such a
strategy will fail for a circuit-direct homotopy function. Com-
plex half-circle e-excursions around period-doubling bifurcation
points lead to unstable cycles for either formulation.

REFERENCES

(1] K. Kundert, J. White, A. Sangiovanni-Vincentelli, Steady-
State Methods for Simulating Analog and Microwave Cir-
cuits, 1990.

[2] E. Allgower, K Georg. Numerical Continuation Methods:
An Introduction. Springer-Verlag, 1990.

[3] Lj. Trajkoric, R. C. Melville, and S.C.Fang. Finding DC op-
erating points of transistor circuils using homotopy meth-
ods, IEEE Int. Symp on Circuits and Systems, Singapore,
June,1991, pp758-761.

R.C. Melville, L. Trajkovic, S-C Fang and L.T. Watson.
Globally Convergent Methods for the DC Operating Point
Problem, TR 90-61, C.S. Dept., Virginia Polytechnic Insti-
tute and State University, 1990.

[5] L.T. Watson. Globally convergent homotopy methods: a tu-
torial, Appl. Math. and Comp., vol. 31, pp. 369-396, May
1989.

[6] L. O. Chuaand A. Ushida. A switching-parameter algorithm
for finding multiple solutions of nonlinear resistive circuits,
Int. j. cir. th eor. appl., 4, 215-239, 1976.

[7] D.M. Wolf and S.R. Sanders. Multi-Parameter Methods for
Finding DC Operating Points of Nonlinear Circuits, IEEE
Int. Symp on Circuits and Systems, Chicago, May, 1993.
Pre-prints of a journal length version submitted to IEEE
CAS Trans. available upon request.

Y Kuroe, Homotopy Applied io Finding Steady-State of
Power Electronic Circuits, Presented at the IJEEE Work-
shop on Computers in Po wer Electronics, 1990.

[4

ey

(8

)

J.H. Deane, D.C. Hamill, Analysis, Simulation and Ezxperi-
mental Study of Chaos in the Buck Converter, IEEE Power
Electron. Specialists Conf., vol 2, pp 491-498, June 1990.

{10] M. Hasler and J. Neirynck, Nonlinear Circuits, Artech
« House, inc, 1986.

{11} J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Veclor Fields,
Springer Verlag, 1983.

[12) V.I. Gulyayev, A.L. Zubritskaya and V.L. Koshkin, A
Universal Sequence of Period-Doubling Bifurcations of the
Forced Oscillations of a Pendulum, PMM U.S.S.R, Vol. 53,
No. 5, pp.561-565, 1989.



