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Dynamic Phasors in Modeling and Analysis of
Unbalanced Polyphase AC Machines
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Abstract—This paper describes a novel approach to dynam-
ical modeling of asymmetries in electric machines and polyphase
systems (e.g., the ones caused by unbalanced supply waveforms).
The proposed technique is a polyphase generalization of the dy-
namic phasor approach from power electronics and electric drives.
The technique is applicable to nonlinear models, and offers dis-
tinct advantages in modeling, simulation and control with respect
to standard time–domain models. In a steady-state, the dynamic
phasors reduce to standard phasors from ac circuit theory. We per-
formed experiments and simulations involving a three-phase in-
duction motor and a three-phase synchronous permanent magnet
motor, and we demonstrate that models based on dynamic pha-
sors provide very accurate descriptions of observed transients. In
a steady state, our approach yields improved equivalent circuits
that contain coupling between the positive and negative sequence
subcircuits.

Index Terms—Generalized averaging, phasor dynamics,
polyphase ac machines, unbalanced operation.

I. INTRODUCTION

M ANY elements in power conversion systems have been
undergoing profound changes in recent years. This

process is primarily driven by a desire to increase efficiency,
with concomitant reduction in energy costs, in power losses and
cooling requirement, and in component size. Polyphase power
converters and drives have a large number of components
connected in a hierarchical, multilayered structure. The com-
ponents exhibit various types of nonlinearities due to properties
of materials, geometries of associated electromagnetic fields,
and switching modes of operation. The continuous operation
of these systems is made possible by feedback control. The
control performance becomes critical for overall reliability
when sudden and potentially detrimental transients are trig-
gered by abrupt changes in the system environment and by load
variations. Thus a precise characterization of such transients
is of primary interest, particularly for emerging control and
protection strategies that are based on signal processing and
microcontrollers.

The voltages and currents in power electronic converters and
electricdrivesare typicallyperiodic,butoftennonsinusoidal.Dy-
namics of interest for analysis and control are often those of de-
viations from periodic behavior. This “sinusoidal quasisteady-
state” approximation is widely used to study electromechanical
dynamics, and it is almost invariably included in software tools
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for power systems. For faster phenomena, the primary tools are
time–domain simulations that make no use of the particular nom-
inalanalyticalformofthevariablesof interest.Time–domainsim-
ulations are not only a significant computational burden, but also
offer little insight into problem sensitivities to design quantities
and no basis for design of protection schemes. This type of fun-
damental analyticalproblem isnotmitigated by improvements in
computational technology.

The modeling methodology presented in this paper builds on
an existing, but nonsystematic knowledge base in the field of
power conversion. Various forms of frequency selective anal-
ysis have deep roots in power engineering in the form of phasor-
based dynamical models, and the main advantage of the ana-
lytical approach proposed here is its systematic derivation of
phasordynamics.The idea of deriving dynamical models for
Fourier coefficients goes back to classical averaging theory. The
dynamical equations for Fourier coefficients are often nonlinear,
and their analytical usefulness stems from the availability of
families of approximationsthat are based on physical insights
offered by the underlying frequency decomposition.

Phasor dynamic models are typically developed from
time–domain descriptions (differential equations) using the
procedure that we denote as generalized averaging. In the case
of nonlinear equations, a key element in the modeling process
is the development of approximations to the right-hand side
of the time–domain equations at a particular frequency. These
approximations are based on the describing function method
[1], [2], and typically problem-dependent; some general error
bounds are provided in [2] and [3]. The concept of dynamic
phasors was introduced in [4], and applied to series resonant
and switched mode dc–dc converters. Extensions to multifre-
quency averaging that takes into account interactions between
harmonics was presented in [5]. This paper extends the concept
of dynamic phasors to polyphase systems, and provides models
of most commonly used ac machines, thus enabling analysis of
complete energy conversion systems. While approximate, the
models based on dynamic phasors are large signal descriptions
fundamentally different from models expressed in terms of
spiral vectors [6], as we do not require linearity of the un-
derlying dynamical model. Spiral vectors, on the other hand,
are defined in terms of transfer functions, constraining their
application domain to linear (or linearized) models.

In Section II, we present basic dynamic phasor concepts and
definitions, and extend them for analysis of polyphase systems;
in Section III we clarify relationships between dynamic phasors
and space vectors; Section IV presents application of dynamic
phasors to induction machines, while the corresponding experi-
mental results are in Section V; modeling and experiments with
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synchronous permanent magnet machines are described in Sec-
tion VI, followed by brief conclusions in Section VII.

II. DYNAMIC PHASORS—CONCEPTS ANDDEFINITIONS

A. Single Phase Systems

The generalized averaging that we perform to obtain our
models is based on the property [3], [4] that a possibly complex
time–domain waveform can be represented on the interval

using a Fourier series of the form

(1)

where and are the complex Fourier coef-
ficients which we shall also refer to asphasors.These Fourier
coefficients are functions of time since the interval under con-
sideration slides as a function of time. We are interested in cases
when only a few coefficients provide a good approximation of
the original waveform, and those coefficients vary slowly with
time. The th coefficient (or -phasor) at time is determined
by the following averaging operation:

(2)

Our analysis provides a dynamic model for the dominant Fourier
series coefficients as the window of lengthslides over the
waveforms of interest. More specifically, we obtain a state-space
model in which the coefficients in (2) are the state variables.

Properties: When original waveforms are com-
plex-valued, the phasor equals (where
is the complex conjugate of). However, in the general case
there are no other relationships among the th dynamical
phasor of the waveform , the th phasor , and the

th phasor of the conjugate waveform . Our interest
in complex-valued waveforms stems mostly from their use in
applications; for example, complex space vectors [7] (which are
scalars in mathematical terms) are widely employed in dynam-
ical descriptions of electrical drives. In the case ofreal-valued
time–domain quantities and , so (1)
can be rewritten as a one-sided summation involving twice the
real parts of for positive . If, in addition, is
time-invariant, the standard definition of phasors from circuit
theory is recovered.

A key fact for our development is that thederivativeof the
th Fourier coefficient is given by the following expression:

(3)

This formula is easily verified using (1) and (2), and integration
by parts. The describing function formalism is useful in evalu-
ating the th harmonic of the right-hand side of the time–domain
model . Another straightforward, but very important
result is that the phasor set of a product of two time–domain
variables is obtained from a discrete-timeconvolutionof corre-
sponding phasor sets of each component.

B. Polyphase Systems

The definitions given in (1) and (2) will now be generalized
for the analysis of polyphase systems. Let us consider the three

phase ( ) case, as the general polyphase case follows
similarly. Following the standard notation, we introduce

; then . Then a time–domain waveform can be
written as

(4)

and we denote the square transformation matrix with. It can
be checked that is unitary, as , where de-
notes complex conjugate transpose (Hermitian). As commonly
encountered in transforms, scaling factors other than are
possible in the definition of matrix , but they require adjust-
ments in the inverse transform. The coefficients in (4) are

(5)

Equation (5) definesdynamicalpositive , negative ,
and zero-sequence symmetric components at frequency

, as

(6)

where is defined in (2). Among the salient features of the
proposed definitions are the compatibility with conventional
symmetric components in a periodic steady-state, and a sim-
ilarity to the single-phase case. Observe that (6) is a vector
generalization of (3). In applications, we are interested in
cases when a finite (and preferably small) number of dynamic
phasors is used in (4).

Properties: From the presented definitions, it follows that
the dynamical symmetrical components ofcomplex-valued
polyphase quantities are related as: ,

, and . In the case of
real-valued waveforms, in (4) ranges over the same positive
and negative harmonics and , ,
and . Thus, again the two-sided summation in
(4) can be replaced by a one-sided version, so that, for example,

The last term takes care of accounting at , when
and is real. Note that in the case of time-independent
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symmetric components, the standard definition from polyphase
circuit theory is again recovered.

The proposed concepts and notation will be now illustrated
on two examples.

Example #1: Consider the case of a balanced three phase
waveform in a steady state that contains first two harmonics

In this case, the only nonzero symmetrical components are
and , and

and . Note that this agrees with practical notions
that harmonics of the order (where is nonnegative
integer) belong to the positive sequence, the harmonics of the
order to the negative sequence, and harmonics of the
order to the zero sequence [8].

Example #2: Consider the case of a possibly coupled three
phase inductor, described by a symmetric matrixand supplied
by (possibly unbalanced) voltages at a fixed frequency.

(7)

Then from (5), after substituting (7), , and (6)

(8)

In a steady state, (8) reduces to the standard result from
polyphase circuit theory (e.g., [9, p. 875]), as the time deriva-
tive on the right-hand side vanishes.

Our definition of dynamical symmetrical components differs
from the notion of instantaneous symmetrical components in-
troduced by Lyon [10] in one very important aspect—(5) in-
cludes integration over a period of the fundamental waveform,
and this is absent in [10]. This difference has important conse-
quences—while the (time-varying) transformation used in in-
stantaneous symmetrical components proved useful in certain
problems, it does not change the time-varying nature of the
model in phase (a-b-c) coordinatesduring transients.On the
other hand, the presence of the integral term in (5) will allow
us to develop time-invariant models with an adjustable degree
of accuracy, as the key mathematical objects of interest (namely
the dynamical symmetrical components) will have transient dy-
namics that can be derived from the original model.

Dynamic phasors can be used for modeling of unbalanced
polyphase systems that include power converters (e.g., recti-
fiers and inverters) and electric machines. In such analyzes we
can vary the number of phasors at different frequencies to ad-
dress a particular problem. In ac motor examples presented in
this paper, all frequencies are harmonically related. A more gen-
eral case occurs for example when mechanical torque load has
angular dependence. In another example, in addition to the fun-

damental of the ac supply and its multiples, we can include a dy-
namic phasor at the pulse width modulation (PWM) frequency
and some of its multiples. This hierarchical nature of the dy-
namic phasor approach is valuable when models of a system
are needed with varying levels of detail.

III. D YNAMIC PHASORS ANDSPACE VECTORS

In modern literature on electric drives [7], it is common to
introduce the notion of complex space vectors (note that the
phase quantities are assumed to bereal)

(9)

Note that from the mathematical standpoint these are complex
scalars; as such, these quantities can encode two directional in-
formation, what is important in cylindrical structures like stan-
dard electric machines. One advantage of the space vector con-
cept in electric drive applications is the ease of dealing with
rotational coordinate transformations, as they amount to pre-
multiplications with complex exponentials [7]. In the case when
zero-sequence quantities are zero, there is a simple inverse trans-
formation

(10)

where denotes the real part of a complex quantity. From (4)
and (9) it follows that

(11)

Since phase quantities are real-valued, we have ,
and encodes the information about positive and negative se-
quence quantities; zero-sequence variables have to be treated
separately. In the special case of and no zero sequence
component

IV. THREE PHASE INDUCTION MOTORMODEL

As our first application, we derive a dynamical phasor model
for a three phase induction machine with unbalanced supply.
Our starting point is the standard model of a squirrel cage in-
duction machine from [7, p. 152], expressed in terms of space
vectors in the stationary coordinate frame (this model neglects
the magnetic saturation and slot harmonics)

(12)

where the subscript corresponds to stator quantities, the sub-
script corresponds to rotor quantities, anddenotes the imag-
inary part of a complex quantity. Note that in electrical equa-
tions nonlinearity appears in the form of speed-current products,
while in the mechanical equation it appears in the form of a cur-
rent product.

At this point we assume that currents contain1st harmonic
( and , respectively), and that the mechan-
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ical speed contains dc (zeroth) component and 2nd har-
monic (due to torque ripple). This is a modeling deci-
sion that can be motivated by simulations of the time–domain
model (12). If more current harmonics and consequently more
torque and speed harmonics are included, the model accuracy
will improve [3], but the model size and complexity will also
significantly increase. A direct application of (3) and (11) then
yields the following model—recall that multiplicative time–do-
main nonlinearities will result in convolution of phasor sets

(13)

This set of nonlinear equations can be rewritten in state-space
form after straightforward, but somewhat tedious algebraic
manipulations. Note that while (13) comprises six differential
equations compared to three in (12), the averaged equation
(13) has a number of useful features. First, it is a time-in-
variant model; second, inputs and consequently states vary
slowly compared to . Thus, it can be used for significantly
faster simulations of transients in an induction machine.
Improvements of two to five times were commonly observed
in our Matlab implementation that made no special effort in
accelerating the simulations. Equation (13) can also be used for
design of improved, possibly large-signal controllers. Note that
dynamic phasors achieve “simultaneous demodulation” in that
all variables in (13) are constant (“dc”) in a steady state. This
cannot be achieved by a single reference frame transformation
in case of an asymmetrically supplied ac machine. Multiple

Fig. 1. Equivalent circuit of a three phase induction motor with unbalanced
supply.

reference frame analysis [11] is one alternative in such case.
Note that our model, while similar in spirit to [11] in the use
of averaging and of frequency-domain considerations, differs
from it in two aspects. We present a model that includes the
mechanical subsystem, and we use the second harmonic in
the mechanical speed to characterize the coupling between
the positive and negative sequence subsystems [e.g., compare
(44)–(51) of [11] and the second equation in (13)]. This cou-
pling remains valid in the steady state as well. Dynamic phasors
allow for simple inclusion of higher frequency components in
the mechanical subsystem, and are very effective in revealing
dynamical couplings between various quantities, as we show in
derivation of a novel equivalent circuit below.

It is of interest to consider (13) in a steady-state (with all
time derivatives set to zero). The resulting equivalent circuit
involving steady-state phasors for the electrical subsystem is
different from the conventional one [7], as there exists a cou-
pling between the positive and negative sequence subcircuits
proportional to , as shown in Fig. 1 ( denotes the slip,

, , , and
. This circuit reduces to the conven-

tional one when speed ripple is neglected. This new equivalent
circuit can be useful in machine design (e.g., for efficiency cal-
culations in single-phase induction machines [12]), and in cases
when the mechanical load does not attenuate the speed ripple
enough to make it negligible.

V. EXPERIMENTSWITH AN INDUCTION MOTOR

To illustrate the accuracy of (4) and (13) when compared with
(12), we explored experimentally and numerically the following
transient: at s the supply voltage suddenly changes from
a balanced set to unbalanced set with different magnitudes. The
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Fig. 2. Transient in line voltages following a sudden loss of balance in supply
voltages. Solid line—experiment. Dash-dotted line—simulation.

induction motor is a three-phase, isolated Y-connected unit with
the following parameter values: , ,

mH, mH, ,
kgm , Nms/rad.Thesupplyvoltages inexperiments
are provided by an HP 6834B programmable AC power source;
phase voltages are10 Vrms before the transient which is initi-
ated by a zero crossing of; after the transient, doubles,
remains unchanged, while is set to zero (the numerical values
for voltages are constrained in all experiments by the characteris-
ticsof theavailablemotors).Actualnumericalvaluesofrmsphase
voltages were [9.89 9.89 9.89] [23.83 10.33 0] .

VI. M ODEL DEVELOPMENT AND EXPERIMENTS FOR A

PERMANENT MAGNET SYNCHRONOUSMACHINE

In Fig. 2 we display the input voltages (solid line—experi-
mentaldata, dash-dotted line—simulation), while in Fig. 3 we
show the currents in phasesand . It turns out that there is
no noticeable difference between the predictions of (4), (12),
and (13). We note a good agreement between the experimental
data and the predictions of the averaged model, even though the
voltage transient is quite abrupt. The speed transients predicted
by (12) and (13) are almost identical—in Fig. 4, we show simu-
lation results obtained from (13). Our time–domain dynamical
model of a permanent magnet synchronous machine in 3-phase
machine variables is taken from [13, p. 500]. Space-vector dy-
namic model in the rotor coordinate frame may be written by
using (9) and converting the stationary frame variables to the
rotor variables ( )

(14)

Fig. 3. Transients in phasea andb currents following a sudden loss of balance
in supply voltages. Solid line—experiment. Dash-dotted line—simulation.

(a)

(b)

Fig. 4. (a) Mechanical speed transient following a sudden loss of balance in
supply voltages. (b) Expanded portion with time axis matching the electrical
transients.
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where the subscript corresponds to stator quantities, the su-
perscript corresponds to quantities referred to rotor coordinate
frame, and is the amplitude of the flux linkages established
by the permanent magnet as viewed from the stator phase wind-
ings. Because of the lack of symmetry alongand axes, the
space vector formalism does not make the mathematical model
more compact—note that (14) involves both the currentand
its conjugate.

We assume that currents contain the dc (and ) and
2nd harmonic ( and , respectively—all in rotor reference

frame). Note that fundamental frequency is , not
, as variables are referred to the rotor coordinate frame.

The mechanical speed contains the dc (0th) component
and 2nd harmonic . A direct application of (3) and (11)
then yields

(15)

This dynamic phasor model is similar to (13), as the modeling
assumptions about linearity of magnetic materials and about fre-
quency content of variables are the same.

To illustrate the results obtained with (14) and (15), we com-
pared experimental and numerical data. The permanent magnet
synchronous motor is a three-phase unit with the following pa-
rameter values: , mH, ,

kgm , Nms/rad, . We
consider the case in which the machine is initially supplied by
a balanced voltage supply (phase voltages are 43 Vrms). Then,
at s, the supply voltage suddenly changes to an unbal-
anced set— increases to 54 Vrms while and remain un-
changed, as shown (for line voltages) in Fig. 5. In Fig. 6 we
display the currents in phasesand (solid line—experimental
data, dash-dotted line—simulation data).

Fig. 5. Sudden loss of balance in supply voltage (magnitude ofV changes).
Solid line—experiment. Dash-dotted line—simulation.

Fig. 6. Transients in phasea andb currents following a sudden loss of balance
in supply voltages. Solid line—experiment. Dash-dotted line—simulation.

VII. CONCLUSION

This paper describes a novel approach to dynamical modeling
of asymmetries in electric machines and polyphase systems. The
proposed technique is a generalization of the dynamic phasor
approach. This technique is applicable to nonlinear models, and
offers distinct advantages in analysis, simulation, and control. In
a steady-state, the dynamic phasors reduce to standard phasors
from ac circuit theory. We performed experiments and simula-
tions involving a three-phase induction motor and a three-phase
synchronous permanent magnet motor, and we demonstrate that
models based on dynamic phasors provide very accurate de-
scriptions of observed transients. In a steady state, our approach
yields improved equivalent circuits which contain coupling be-
tween the positive and negative sequence subcircuits that is pro-
portional to the steady-state speed ripple.
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