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Abstract— We report on simple and intuitive techniques for the
modelling of synchronous machines and their associated control
systems. A scheme for control of electrical power flow is proposed
for machines with variable–speed six–step drive. The scheme is
developed with an eye toward efficient system operation, simple
implementation, low latency in the control path and minimized
cost of power electronics. Experimental results are presented for
application of the control scheme to a homopolar inductor motor,
as used in a flywheel energy storage system.

I. INTRODUCTION

Two techniques are presented here for simplification of
the modelling and control design process for synchronous
machines. What the two techniques have in common is a
reliance on the underlying physical properties of the machine
and drive system to suggest accurate yet tractable formulations
of the control design problem. By reducing the order of
the machine model and grouping control inputs and outputs
according to their coupling strength, engineering intuition can
be improved, and classical control results can be applied with
confidence.

The first technique uses singular perturbation theory to per-
form a partitioning of the state–space model into “slow” and
“fast” subsystems, which correspond to the mechanical and
electrical variables, respectively. Since the electrical variables
are often the focus of the control effort (e.g. in implement-
ing torque or power control), the mechanical dynamics of
the model can be suppressed. The second technique gives
a methodology for determining whether a 2 × 2 multiple–
input multiple–output (MIMO) system can be approximated
as diagonal, in the sense that each input is primarily coupled
to only one output and vice versa. If this is found to be the
case, then an opportunity exists to independently synthesize
a stabilizing scalar feedback loop for each input–output pair
appearing on the diagonal, outside of the context of the overall
system. Sufficient conditions exist to show that these control
loops will then stabilize the overall system in the face of cross–
coupling between the loops (i.e. nonzero off–diagonal terms).
Further, the performance of the system will remain close to
that of the diagonal approximation.

The motivation for this approach is the control of a flywheel
energy storage system [1]. The system consists of a homopolar
inductor motor/generator (HIM) whose rotor is also the fly-
wheel energy storage element, and a six–step voltage source
inverter fed from a DC bus. Application of the modelling and
control design procedure described above to the HIM with six–

step drive yields a simple and effective control of electrical
power flow in the machine.

Cost is a driving factor in the design of such a system,
and the power electronics associated with a variable–speed
machine drive are a significant component of this cost. A six–
step drive scheme can reduce the cost of power electronics
by enabling a closer matching of the DC bus voltage and
the fundamental voltage waveform at the machine terminals
than would be possible with a pulse width modulation (PWM)
scheme. Six–step drive implies higher efficiency and higher
maximum synchronous frequency than PWM as well.

II. VARIABLE–SPEED ELECTRIC MACHINE DRIVES

While the choice of drive for an electric machine may seem
to be merely a detail of the hardware implementation, in fact
it is critical to select a drive scheme before embarking on the
system modelling and subsequent control design. Each drive
type imposes unique constraints on the system inputs, and con-
sequently the drive will determine which model formulations
are convenient, and which are unsuitable.

By far the most common approach for variable–speed drives
is PWM. However, six–step drive carries several advantages
over PWM, particularly for high speed applications:

• Six–step drive generates a fixed amplitude excitation
using the full bus voltage, resulting in semiconductor
VA requirements that are closely matched to the inverter
output. PWM schemes typically do not utilize the full bus
voltage, but rather regulate the bus voltage down to avoid
saturation of the duty cycle. The inverter semiconductor
devices must still block the entire bus voltage however,
and hence devices must be rated for a voltage higher than
the intended output. Thus for a given amplitude of drive
waveform, six–step allows the use of devices with lower
VA ratings, which are less expensive.

• For six–step drive, the switching frequency of a given
device is the same as the drive frequency. In contrast,
PWM drive requires a large ratio of switching frequency
to drive frequency, resulting in lower maximum drive
frequencies for a given choice of semiconductor device.
This also implies that for a given drive frequency, six–
step will exhibit lower switching dependent losses.

• For separately excited synchronous machines, running at
unity power factor with six–step drive allows for zero–
current switching, further reducing switching dependent
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losses. PWM requires hard switching, leading to associ-
ated losses and device stresses.

• Finally, six–step drive produces greatly reduced high
frequency harmonics as compared to PWM, resulting in
lower rotor and stator core losses [2].

III. SYNCHRONOUS MACHINE MODEL

In a stationary reference frame, the standard two–axis model
for the electrical dynamics of a synchronous machine can be
written as

d
dtλabf = −RL(θ)−1λabf + Vabf (1)

where λabf and Vabf indicate the vectors of flux linkages and
terminal voltages, respectively, for armature windings a and
b and field winding f . The term R is a diagonal matrix of
winding resistances and L(θ) is a symmetric inductance matrix
dependent on the rotor angle θ. Electrical torque τe is given
by

τe = d
dθ ( 1

2λT
abfL(θ)−1λabf ) (2)

and the mechanical speed of the rotor, ωm, is governed by

d
dtωm = 1

J (τe − Bvωm) (3)

where J represents rotor inertia and Bv is a viscous drag term.
Equation 1 can be transformed into a synchronous reference

frame denoted (d,q), resulting in a time invariant model. The
armature voltage vector is chosen to define the q axis; as a
consequence, for sinusoidal drives Vq is constant and Vd is
identically zero.

The only choice of input for a conventional fixed voltage
six–step drive is the drive frequency, hence ωe is one system
input. If a high bandwidth current control loop is implemented
to set if , λf drops out of the model, and if appears as a second
input. Thus the electrical dynamics simplify to

d
dtλd = −R

L λd + ωeλq + RLm

L if cos θ (4)
d
dtλq = −ωeλd − R

L λq − RLm

L if sin θ + Vq (5)
d
dtθ = ωe − N

2 ωm (6)

where Eq. 6 describes the evolution of the angle θ between
the d and f axes for an N–pole machine. Finally, outputs of
interest are id and iq:

id = 1
Lλd − Lm

L if cos θ (7)

iq = 1
Lλq + Lm

L if sin θ. (8)

Equations 4-8 can be linearized, yielding an LTI system of the
form

d
dtx = Ax + Bu (9)

y = Cx + Du (10)

with state vector x = [λd λq θ ωm]T , input u = [if ωe]T and
output y = [id iq]T . The interested reader will find the exact
form of the Jacobian matrices A, B, C and D in Appendix
I.

10
0

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

40

60

M
ag

. (
dB

)

H
11

10
0

10
1

10
2

10
3

10
4
90

135

180

225

270

315

360

P
ha

se
 (

de
gr

ee
s)

10
0

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

40

60

M
ag

. (
dB

)

H
12

10
0

10
1

10
2

10
3

10
4
−90

−45

0

45

90

135

180

P
ha

se
 (

de
gr

ee
s)

10
0

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

40

60

M
ag

. (
dB

)

H
21

10
0

10
1

10
2

10
3

10
4
−45

0

45

90

135

180

225

P
ha

se
 (

de
gr

ee
s)

10
0

10
1

10
2

10
3

10
4

−60

−40

−20

0

20

40

60

Frequency (Hz)

M
ag

. (
dB

)
H

22

10
0

10
1

10
2

10
3

10
4
−315

−270

−225

−180

−135

−90

−45

P
ha

se
 (

de
gr

ee
s)

Fig. 1. Bode plots of synchronous machine electrical dynamics corresponding
to Eqs. 12-15. Solid lines indicate magnitude, dotted lines indicate phase.

IV. TIME–SCALE SEPARATION

In electric machines, one expects intuitively that the time
constants of the electrical variables will be much faster than
those of the mechanical variables. Hence in dealing with
electrical dynamics the speed of the rotor appears to be con-
stant, while relative to the mechanical time constants electrical
transients appear to settle instantaneously. The model given
by Eqs. 9-10 can thus be approximated by a partitioning into
“fast” and “slow” subsystems.

Such a partitioning achieves a great simplification of the
model at the expense of a slight error in the calculation of
system dynamics. For example, the approximate two–time–
scale model of the experimental system discussed in Sec. VII
estimates the system eigenvalues to within 10% of the values
given by the original model. Singular perturbation theory
provides a formal framework for such system partitioning.
Relevant results are presented in Appendix II; for a detailed
treatment of the theory, see [3].
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Fig. 2. Phasor diagram for a synchronous machine operating at unity power
factor.

In implementing control of electrical rather than mechanical
variables, the order of the model can be reduced such that
the slow dynamic effects of the mechanical subsystem are
suppressed. This approximation of the fast subsystem neglects
the effect of the evolution of ωm. The reduced–order transfer
matrix H for the synchronous machine model is thus[

îd
îq

]
=

[
H11 H12

H21 H22

] [
îf
ω̂e

]
(11)

where a hat (̂ ) indicates a variable in the s–domain, and the
transfer functions are given by

H11 = − (
Lm

L cos θ̄
)
(s2 + R

L s + ω̄2
e (12)

+ω̄e
R
L tan θ̄)/DH

H12 = {̄iqs2 +
(

R
L īq − 1

L ω̄eλ̄d

)
s + ω̄2

e

(̄
iq − 1

L λ̄q

)
(13)

+ω̄e
R
L

(̄
id − 1

L λ̄d

)}/sDH

H21 =
(

Lm

L sin θ̄
) (

s2 + R
L s + ω̄2

e − ω̄e
R
L cot θ̄

)
/DH (14)

H22 = {−īds
2 − (

R
L īd + 1

L ω̄eλ̄q

)
s − ω̄2

e

(̄
id − 1

L λ̄d

)
(15)

+ω̄e
R
L

(̄
iq − 1

L λ̄q

)}/sDH

DH = s2 + 2R
L s +

(
R
L

2
)

+ ω̄2
e .

The bar (̄ ) notation indicates the operating point value of a
variable as used in linearizing the model. Bode plots of the
transfer functions in Eqs. 12-15 are shown in Fig. 1.

V. INDEPENDENT SCALAR FEEDBACK

As a preliminary exercise to the discussion of control
design, it is useful to examine the phasor diagram of electrical
machine variables near unity power factor operation in Fig.
2. Classical analysis (as in [4]) of the figure suggests strong
coupling for the diagonal (in the sense of Eq. 11) input–
output pairs (if ,id) and (ωe,iq), and weak coupling for the
off–diagonal pairs. To see this, assume that R�ωeL, and note
that a change in the magnitude of if results in a proportional
change in the magnitude of E. This causes a change in the
angle between V and i with little change in the magnitude
of i. If the angle between V and i remains small (near unity

Fig. 3. Control system implementing feedback only for diagonal input–output
pairs. Cii indicates a compensator, Hij indicates a plant block.

power factor), almost all the change in i occurs along the d
axis. Similarly, varying ωe will result in a slight difference
between ωe and N

2 ωm, producing a change in the angle θ. A
change in θ primarily affects the magnitude of i (rather than
the angle of i), and hence most of the change in i occurs along
the q axis. This qualitative analysis is supported by the bode
plots in Fig. 1.

A quantitative analysis proceeds from Fig. 3, which shows
a block diagram of the system in the s–domain. Because the
development here is intended to be general, variables ei, ui, vi,
and yi, i=1, 2, are defined as in the figure. Note that feedback,
with compensators denoted C11 and C22, is only implemented
for the diagonal input–output pairs (vi, yi). The following
assumptions are made concerning the transfer functions in Fig.
3 [5]:

1) Each block represents a proper scalar transfer function
of the form N(s)/D(s).

2) No right half plane (RHP) pole–zero cancellations be-
tween (C11C22) and (H11H22) occur.

3) Any RHP poles that occur in (H12H21) also occur
(including multiplicity) in (H11H22).

Consider independently the two single–input single–output
(SISO) feedback systems formed by the blocks on the diagonal
(C11, H11, C22, and H22). Equivalently, assume H12=H21=0.
Classical results from SISO control theory apply to these two
systems, and given assumptions 1 and 2, internally stable
closed–loop systems can be formed by proper design of the
compensators C11 and C22. Disregarding inputs and outputs,
the two SISO systems can be consolidated into equivalent
closed–loop blocks −C11S1 and −C22S2, where

S1 =
1

1 + C11H11
(16)

S2 =
1

1 + C22H22
. (17)

Now consider the system as a whole (i.e. lift the restriction
that H12=H21=0). The stability of the overall system can
be examined by breaking the loop between any two of the
remaining four blocks, and finding the open–loop transfer
function

G = H12H21C11S1C22S2. (18)

The open–loop poles of G are given by the poles of S1 and
S2, and any stable poles of H12 and H21 not cancelled by
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H11 and H22. By assumption 3, any unstable poles of H12

and H21 are exactly cancelled by zeros of S1 and S2. Further,
the poles of S1 and S2 have been explicitly placed for stability
and performance via prudent design of C11 and C22. Thus the
structure of G and the assumptions above guarantee that G
has no unstable open–loop poles.

Note that any uncancelled poles of H12 and H21 are stable,
but unaffected by either SISO loop closure. While this inability
to place every pole represents a disadvantage of the diagonal
control approach, a large subset of systems exists for which
the poles of H12 and H21 are either acceptable or will cancel
entirely.

Given that G is guaranteed to be open–loop stable, the
closed–loop stability of G can be demonstrated by application
of the small gain theorem [6]. Specifically, if the open–loop
poles of G are stable, and

||G||∞ < 1 (19)

then the closed–loop poles of G are stable.
A slight manipulation of G can improve intuition with

respect to the condition given by Eq. 19. Substituting in Eqs.
16-17, and multiplying in both the numerator and denominator
by the quantity (H11H22) gives

G =
H12H21

H11H22
· C11H11

1 + C11H11
· C22H22

1 + C22H22
. (20)

Defining the terms

∆ =
H12H21

H11H22
(21)

T1 =
C11H11

1 + C11H11
(22)

T2 =
C22H22

1 + C22H22
(23)

the small gain condition for stability becomes

||∆T1T2||∞ < 1 (24)

or equivalently

max
0<jω<∞

{|∆| · |T1| · |T2|} < 1. (25)

The condition given by Eq. 25 implies an elegant design
methodology for stabilizing 2 × 2 MIMO systems. (We note
the similarity to “individual channel design” described exten-
sively in [7], [8], [9], [10], [11]). The magnitude of the term
∆ gives a measure of the “diagonal–ness” of the system —
that is, a measure of the relative coupling strengths of diagonal
versus off–diagonal input–output pairs. If the magnitude of ∆
is much less than unity over the desired control bandwidth,
then chances are good that the system can be stabilized by
two independently designed feedback loops. (As a corollary,
a magnitude much larger than unity suggests that exchanging
the input–output pairs will result in favorable conditions for
independent control.) It is then a straightforward task to design
compensators C11 and C22 to meet given specifications for
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Fig. 4. Plot of |∆| (dashed), |T1| (dash–dotted), |T2| (dotted), and
|∆| · |T1| · |T2| (solid).

the two independent SISO systems. If each SISO system can
be stabilized and made to exhibit a suitably well–damped
response, then the MIMO system is guaranteed to be stable as
well. Consider Fig. 4, which uses values from the experimental
system of Sec. VII. The figure makes explicit the bandwidth
limitations imposed by the structure of the plant. Examining
the plot of |∆|, it is clear that well–damped closed–loop
transfer functions T1 and T2, designed to have approximately
the same corner frequency as ∆, will satisfy Eq. 25.

Note that the small gain theorem gives a sufficient, but not
necessary, condition for stability of the closed–loop system.
A necessary and sufficient condition is given by the Nyquist
theorem [12]. Compared to the Nyquist theorem, the small
gain theorem is overly restrictive; Nyquist design constraints
permit open–loop gain to exceed unity for phase angles that
are far from 180◦.

However, the restriction imposed by the small gain theorem
proves to be beneficial, in that it also keeps closed–loop perfor-
mance close to the performance predicted by the independent
design of C11 and C22. Equations 26-29 give the closed–loop
transfer functions for Fig. 3. The transfer functions have been
arranged such that in each case the first term represents what
might be called the “decoupled” result, while the term in
parentheses represents a multiplicative perturbation resulting
from loop interactions via off–diagonal terms.

y1

v1
=

C11H11

1 + C11H11

(
1 − ∆T2

1 − ∆T1T2

)
(26)

y1

v2
= C22H12

(
S1S2

1 − ∆T1T2

)
(27)

y2

v1
= C11H21

(
S1S2

1 − ∆T1T2

)
(28)

y2

v2
=

C22H22

1 + C22H22

(
1 − ∆T1

1 − ∆T1T2

)
(29)

Bode plots of Eqs. 26-29 using values from the experimental
system of Sec. VII are presented in Fig. 5. For each equa-
tion, the figure shows the “decoupled” term (which is the
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Fig. 5. Bode plots of (a) Eq. 26, (b) Eq. 27, (c) Eq. 28, (d) Eq. 29. Dashed
lines indicate decoupled terms, dash–dotted lines indicate perturbation terms,
solid lines indicate combined results. Note that the solid and dashed lines in
(a) and (d) coincide up to the resolution of the figure.

result obtained by considering each transfer function indepen-
dently), the “coupling” term (the term in parentheses, which
represents a multiplicative perturbation resulting from off–
diagonal coupling), and the combined result. The perturbation
of the diagonal terms is close to unity over a wide range
of frequencies, preserving the performance of the SISO loop
designs. The perturbation of the off–diagonal terms serves to
increase the decoupling of the two control loops over the
control bandwidth, improving upon the original assumption
of weak coupling.

VI. CONTROL STRATEGY

Given the analysis of Sec. V, it is clear that the tracking
of commands for id and iq in the synchronous machine
can be achieved with two independent scalar feedback loops.

Fig. 6. Control system block diagram.

Implementation of this scheme is shown in Fig. 6.
An attractive feature of the control scheme is its simplicity

in both architecture and implementation. The reference frame
is defined by the inverter voltage, hence the reference frame
angle (φ in Fig. 6) is explicitly known six times per period
of the electrical frequency — every time that the inverter
switches. By sampling armature currents at these instants,
sampled current values can be transformed into the rotating
reference frame and compared to commands. Unlike flux–
oriented vector–based control schemes, no observer is required
to resolve the reference frame, and no sampling of terminal
voltages is required. Scalar control laws — an integrator for
C11 and proportional–integral (PI) form for C22 — yield the
desired response characteristics. Because only a small number
of control calculations need to be performed, latency in the
control path is small. Assuming a six–step drive operating
from a fixed bus voltage, this current control amounts to
instantaneous control of active and reactive power in the
machine.

VII. IMPLEMENTATION AND RESULTS

The above control scheme was implemented on a homopolar
inductor machine (a separately excited synchronous machine)
with six–step voltage source inverter drive. The machine is
part of a flywheel energy storage system in which the mo-
tor/generator rotor also serves as the energy storage element.
The system is described in detail in [1], [13], [14].

Figures 7-11 show system response to step commands of
iq from −80 A to 80 A and from 80 A to −80 A, while id
is commanded to a constant zero. Bus voltage was 70 V , and
rotor speed ranged from 15 krpm at low–to–high iq transitions
to 30 krpm at high–to–low iq transitions.

Figure 7 shows experimental data for electrical frequency
and real current. However, since the machine is synchronous
and the bus voltage is fixed, the figure can be thought of as
showing flywheel speed and power flow in the machine. When
the current (power) is positive, the machine speeds up, storing
energy. Similarly, when current is negative, the machine slows
down, returning its stored kinetic energy to the bus. Note the
small transients that occur at each peak and valley of the
ωe trajectory. These represent instantaneous departures from
synchronous operation to change the angle between reference
frame and rotor.
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Figures 8-11 focus on the transients, showing the id and iq
commands, experimental id and iq outputs, simulations using
the nonlinear dynamics presented in Eqs. 2-8 and simulations
using the linear reduced–order system Eqs. 12-15. Note that
the iq command is not a pure step input, but rather an
exponential rise with very short time constant. This input
was used in the experimental system to reduce sharp transient
spikes, and hence simulations were performed with the same
input.

The nonlinear model shows excellent agreement with the
experimental results, except for sharp transients on id. These
were caused by fluctuations in the bus voltage not included in
the model. The linear model accurately captures the rise and
fall times of the output currents, although it fails to predict
some overshoot and steady–state error.

VIII. CONCLUSIONS

Analysis of a synchronous machine and variable–speed
drive system was performed, and insights were provided as
to useful simplifications that aid the control design process. A
control scheme was presented that permits six–step inverter
operation, which has several advantages over PWM. The

13.85 13.9 13.95 14 14.05 14.1
−100

−50

0

50

100

i q (
A

)

13.915 13.92 13.925 13.93
−100

−50

0

50

100

i q (
A

)

Fig. 9. Step response of iq , for an iq step command from 80 A to
−80 A and id command of constant zero, showing iq command (solid),
experimental result (dotted), nonlinear model simulation (dashed), and linear
model simulation (dash–dotted). The lower figure shows the plot from the
upper figure in an expanded time scale.

13.85 13.9 13.95 14 14.05 14.1

−50

0

50

i d (
A

)

13.915 13.92 13.925 13.93 13.935 13.94

−50

0

50

i d (
A

)

Fig. 10. Step response of id, for an iq step command from −80 A
to 80 A and id command of constant zero, showing id command (solid),
experimental result (dotted), nonlinear model simulation (dashed), and linear
model simulation (dash–dotted). The lower figure shows the plot from the
upper figure in an expanded time scale.

23 23.05 23.1 23.15 23.2 23.25
−60

−40

−20

0

20

40

i d (
A

)

23.054 23.056 23.058 23.06 23.062 23.064 23.066
−60

−40

−20

0

20

40

i d (
A

)

Fig. 11. Step response of id, for an iq step command from 80 A to
−80 A and id command of constant zero, showing id command (solid),
experimental result (dotted), nonlinear model simulation (dashed), and linear
model simulation (dash–dotted). The lower figure shows the plot from the
upper figure in an expanded time scale.

1808



feasibility of the control scheme, as well as the usefulness of
the design methodology, was demonstrated through application
to experimental hardware.

APPENDIX I
The Jacobians A, B, C and D described in Sec. III are given by

Eqs. 30-33. The bar (̄ ) notation indicates the operating point value
of a variable as used in linearizing the model.

A =




−R
L ω̄e −RLm

L īf sin θ̄ 0
−ω̄e −R

L −RLm

L īf cos θ̄ 0
0 0 0 −N

2

a41 a42 a43 −Bv

J


 (30)

a41 = N
2

1
J

Lm

L īf sin θ̄

a42 = N
2

1
J

Lm

L īf cos θ̄

a43 = N
2

1
J

Lm

L īf (λ̄d cos θ̄ − λ̄q sin θ̄)

B =




RLm

L cos θ̄ λ̄q

−RLm

L sin θ̄ −λ̄d

0 1
N
2

1
J

Lm

L (λ̄d sin θ̄ + λ̄q cos θ̄) 0


 (31)

C =

[
1
L 0 Lm

L īf sin θ̄ 0
0 1

L
Lm

L īf cos θ̄ 0

]
(32)

D =

[
−Lm

L cos θ̄ 0
Lm

L sin θ̄ 0

]
(33)

APPENDIX II
Here results from singular perturbation analysis are developed.

Considering Eqs. 9 and 10, the system is partitioned according to the
double lines in Eqs. 30-33, where xf=[λd λq θ]T and xs=ωm.
A small parameter ε>0 explicitly indicates that xf changes quickly
with respect to xs, such that

ε d
dt

xf=A11xf + A12xs + B1u (34)
d
dt

xs=A21xf + A22xs + B2u. (35)

An invertible change of variables can be defined such that wf,s =
Mxf,s, where M is given by

M =

[
If M12

0 Is

]
. (36)

Applying M to Eqs. 34-35 gives

ε d
dt

wf=(A11 + εM12A21)wf + f(M12, ε)ws (37)

+(B1 + εM12B2)u
d
dt

ws=A21wf + (A22 − A21M12)ws + B2u (38)

where

f(M12, ε)=A12 − A11M12 + εM12A22 (39)

−εM12A21M12.

From here, a block–triangular form can be obtained by finding a
value of M12 such that f(M12, ε) = 0. This is possible only if
A−1

11 exists. Assuming this is the case, M12 can be found via a
Taylor series expansion, giving

M12(ε) = A−1
11 A12 + εA−2

11 A12A0 + O(ε2) (40)

where A0 = A22 − A21A
−1
11 A12. Hence the slow subsystem is

governed by
d
dt

ws(t)=A21wf (t) + (A22 − A21M12(ε))ws(t) (41)

+B2(u)

and the fast subsystem is governed by
d

dτ
wf (τ)=(A11 + εM12A21)wf (τ) (42)

+(B1 + εM12B2)u(τ)

where the time scale for the fast dynamics has been “stretched” by
defining τ= t−to

ε
. Notice that as ε→0, Eq. 42 approaches
d

dτ
wf (τ) = A11wf (τ) + B1u(τ) (43)

which is the fast subsystem that one intuitively expects. Further, Eq.
41 approaches

d
dt

ws(t)=A21wf (t) + (A22 − A21A
−1
11 A12)ws(t) (44)

+B2(u)

giving an approximation of the slow subsystem.
It can be shown for Eq. 43 that if all the eigenvalues of A11

(nonzero by previous assumption) have negative real parts, then
wf (τ) converges exponentially to a finite solution dependent on u(τ).
Hence a necessary requirement for a stable reduced–order system is

Re(λi(A11)) < −c < 0 ∀i (45)

where λi(A11) indicates the ith eigenvalue of A11, and c > 0.
This condition is obviously not met for the A11 matrix given in

Eq. 30); in fact this matrix is singular. However, it is possible to
satisfy the condition given by Eq. 45 by applying feedback control
to the fast subsystem. Hence the modelling effort may still proceed
with the reduced–order system given by A11, B1, C1, and D.
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