An Electrostatic Microresonant Power Conversion Device

J. Mark Noworolski Seth R. Sanders
Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Abstract
An electrostatically driven microstructure suitable for use in a
monolithic resonant DC-DC converter is presented. The
device can be manufactured using existing integrated circuit
processing techniques, permitting integration with switching
devices in Silicon. The mechanical resonant structure is used
in place of an LC tank and in place of a transformer, avoiding
the complexity of manufacturing integrated magnetic ele-
ments. A monolithic resonant converter using this technology
offering high power density is proposed. The device can po-
tentially be driven in a zero-voltage-switched (ZVS) mode,
scaling well to higher operating frequencies.

1 Introduction
A large proportion of present power electronics research fo-
cuses on miniaturization of power converters. The goal is to
maximize efficiency and power density. Power densities of
approximately 50W/cm² have been reported in the literature
for discrete switch-mode supplies [1]. Efforts at miniaturiz-
ing power converters often are hampered by the difficulty of
integrating magnetic components with other circuit elements
using existing processing technology.

One interesting approach proposed by Smit et al. [2] and
Stielau et al. [3] integrates an inductor with a capacitor using
microstrip theory. This method permits the manufacture of
integrated LC structures suitable for power conversion appli-
cations. Apparently, these devices are not compatible with
existing planar integrated circuit technology. The paper of
Yachi et al. [4] outlines a planar microtransformer manufact-
ured by dry process techniques using Cu, Ta, and CoZrRe
as the magnetic material. This process apparently permits
integration of the microtransformer with power semi conduc-
tor devices. The microtransformer is used as a component
in a discrete 36 mW output forward converter operating at
32Mhz. A problem with this design is the large series resis-
tance of the device, apparently caused by contact resistance
between the two separate metallization steps needed to define
the coil. Another approach for constructing integrated power
supplies has been based on the methodology of switched ca-
pcator circuits [5, 6, 7]. The limitations of this are in the
lack of isolation and in the inherent switching losses.

2 Principles of Operation
The device, shown schematically in Figure 1a), consists in
principle of two mechanically coupled variable capacitors
mounted on springs as shown in Figure 1b). The dark areas
are immobile, while the shaded region represents the mecha-
nical coupling between the capacitors. In our design, a fixed
beam acts to provide the restoring spring force, the driving
force is provided by an applied voltage between the primary
mobile plate and the bottom electrode (C1 in Figure 1), and
the mechanical coupling is provided by a strip of silicon ni-
tride. The device is biased with a DC voltage through a high
impedance and is excited near resonance by an active bridge
circuit as shown in Figure 2. A coupling capacitor is needed
to block the DC bias voltage. The DC bias could be supplied
across a substrate capacitor by a solid-state voltage multiplier
circuit. The secondary side is a mirror image of the primary,
but with the active switch devices replaced by diodes, and
the source replaced by a load.

Energy is transferred from the primary to the secondary
by the mechanical coupling within the structure. A basic ap-
proach is to run the device near the resonant frequency, pro-
viding the greatest mechanical oscillations. The total power
handling capacity of the device can be approximated by

\[P_e = f_s \frac{A}{A} \left(\frac{1}{2} \right) \left[V_4 + \frac{V_2}{2} \right]^2 - \left(\frac{V_2}{2} \right)^2 = f_s \frac{A}{A} \frac{V_4}{V_2} \]

(1)
in watts per unit area. Here, \(f_s \) is the operating frequency of
the device (selected near the resonant frequency), and \(A \) is
the capacitance change per unit area of wafer surface. A jus-
tification for the estimate (1) is as follows. If the maximum
voltage \(V_4 + \frac{V_2}{2} \) is applied while the plates are moving to-
ward each other, the energy absorbed on the primary side is
\(\left(\frac{1}{2} \right) \Delta C \left(V_4 + \frac{V_2}{2} \right)^2 \). Then, if the minimum voltage \(V_4 - \frac{V_2}{2} \)
is applied while the plates are moving apart, the energy re-
Figure 1: Illustration of Mechanical Capacitive Structure

Figure 2: Example of Power Converter Employing Resonant Device.

Figure 3: Typical Zero Voltage Switching Waveforms

The proposed converter should scale well to higher frequencies, since it permits zero-voltage-switching (ZVS) similar to that described in [8, 9] when operating above resonance. Naturally, the high frequency hysteresis and eddy current losses associated with magnetic components are avoided. By sequencing the gate drives for the active bridge as indicated in Figure 3, zero-voltage-switching can be effected. In particular, the top transistor Q1 is switched off while the plates of the capacitor are still moving toward each other, and hence the current i into the capacitor is positive. If the amplitude of the mechanical oscillation is large enough, the voltage on the capacitor (and associated parasitic capacitance) is pulled down until the bottom diode D2 turns on. Then, the bottom transistor Q2 can be turned on at zero voltage. Transistor Q2 is held on until the motion of the plates reverses. The lossless turn-off of Q2 and turn-on of Q1 occurs in a symmetric fashion. The secondary can also exhibit zero-voltage-switching as in a series resonant DC-DC converter.

The nominal voltage transfer ratio from primary to secondary can be set by the DC bias on either side of the structure and the relative areas of the coupled resonant capacitors. Power flow can be controlled by frequency variation as in a series resonant converter, or more simply by controlling the DC bias voltage.

A completed device made from polysilicon with silicon nitride mechanical coupling is shown in Figure 5. A section of the corresponding layout description is shown in Figure 4. Alternating plates correspond to capacitors C1 and C2 in Figure 1a. Motion is in the vertical direction, with one electrode of the capacitor defined by the top polysilicon layer,
and another by the lower polysilicon layer. The lines running alongside the devices electrically interconnect the individual mechanical devices. Note that the strategy in building a high power converter is to parallel many of these devices. The structure in Figure 5 consists of a parallel connection of these devices in one dimension, and Figure 6 shows a scheme for connecting large numbers of these devices in two dimensions.

Device Modeling With thick plates, the device with only a primary can be modeled as a parallel connection of fixed-fixed beams, yielding the following governing equations

\[
\begin{align*}
\dot{q} & = CV + \frac{\partial C}{\partial z} \ddot{z} V \\
\dot{m} \ddot{z} & = -kz - b \dot{z} + F_{\text{mech}} \\
F_{\text{mech}} & = \frac{1}{2} \frac{\partial C}{\partial z} V^2
\end{align*}
\]

(2)

where \(z \) is the position of the plate with \(z = 0 \) corresponding to the static position with no bias, \(C(x) = \varepsilon_0 \frac{A}{d} \) is the instantaneous capacitance, \(s \) is the static separation of the plates with no DC bias, \(m \) is the mass, \(k \) is the spring constant, \(b \) is the damping, \(q \) is the charge on the plates, and \(V \) is the voltage. From elementary beam theory the spring constant is found to be

\[
k = \frac{16 \varepsilon_0 w h^3}{l^2}
\]

where \(h \), \(w \), and \(l \) are the height, width, and total length of the support beam respectively, and \(E \) is the Young's modulus of polysilicon. By solving equations (2) for an equilibrium, we find the static deflection as a function of the applied DC bias. Note that there is a critical pull-in voltage above which the attractive force overcomes the restoring spring force, thereby pulling the plates together. This is given by

\[
V_{\text{ps}} = \sqrt{\frac{8kA}{27e_0 p}}
\]

(3)

where \(A_p \) is the area of the plate. Figure 7 plots the normalized deflection of the plate \(\frac{\delta}{z_0} \) versus the normalized voltage \(\frac{V}{V_{\text{ps}}} \), as determined from (2) to be

\[
\frac{V}{V_{\text{ps}}} = \sqrt{1 - \frac{27 z_0}{s}} \sqrt{\frac{27 z_0}{4 s}}
\]

(4)

It is instructive to linearize the nonlinear mechanical equation in (2) around the equilibrium point \(z_0 \) corresponding to a bias voltage \(V_0 \), giving

\[
\begin{align*}
\frac{m \ddot{z}}{x_0} + b \dot{z} + K_s \dot{z} & = 0 \\
K_s & = k - \frac{\partial C}{\partial z} \bigg|_{x_0}
\end{align*}
\]

(5)

From (5), it is evident that an increase in DC bias will result in a decrease in the effective spring constant \(K_s \), thereby resulting in a decrease of the resonant frequency. Figure 8 summarizes the relationship between normalized resonant frequency, normalized deflection and normalized DC voltage.

3 Process

Devices have been fabricated using CMOS-level clean furnaces and etch procedures. The process is similar in principle to that described in [11] where the etch of a sacrificial phosphosilicate glass (PSG) layer releases polysilicon structures.

In the first step, a 5000A layer of in-situ doped polysilicon is deposited and patterned on a passivated substrate. Next,
a 2.5 µm PSG layer is deposited and patterned (Figure 9a). This layer offsets the supports from the substrate relative to the plate, thereby minimizing parasitic capacitance.

Next a blanket 3000A insulating layer of low stress silicon nitride followed by 1 µm of PSG is deposited. The PSG is then patterned to define the fixed points for the springs (Figure 9b). The nitride ensures that in the event that the two plates contact a short circuit current will not destroy the device.

Then, the 2.4 µm structural layer of undoped polysilicon is deposited, followed by a doping PSG layer. The resulting PSG/poly/PSG sandwich is then annealed at 950°C in a nitrogen ambient for one and a half hours. In addition to doping the polysilicon, this step decreases the stress gradients in the polysilicon. The top oxide is removed in 5:1 buffered hydrofluoric acid (BHF), and the polysilicon is patterned twice; firstly to define the general shape of the upper layer, and secondly to define the thin sections of the upper polysilicon (Figure 9c).

Finally, the bottom layer of nitride is exposed by removing some of the sacrificial oxide in a timed 5:1 BHF etch. This is then patterned to expose contacts to the bottom layer of poly, and then the remainder of the sacrificial oxide is removed in a timed 49% HF etch.

For test devices with a secondary port another 4000A layer of nitride is deposited and patterned to couple adjacent sections of mobile polysilicon.

4 Results and Discussion

Structures designed to have a resonant frequency of approximately 1 MHz have been fabricated using the process outlined above. The area of each test device is approximately 0.3 mm². For a device with only a primary side resonant capacitor, sharp resonant behavior is attained in vacuum. Figure 10 shows measured device current and voltage excitation. With no DC bias, the behavior is that of a capacitor of approximately 15 pF. With a 50 V DC bias, a significant component of current due to the mechanical resonance is exhibited. With only a 4 V excitation, the resonant current is on the order of 1 mA. With these numbers, a power handling capability of 8 mW/mm² or 0.8 W/cm² is attained. With a larger voltage excitation, greater power handling capacity could be measured. To exhibit the high-Q resonant behavior of the device, Figure 11 shows a measured small-signal admittance plot.

In Section 2 we derived an expression for \(V_p \), an upper bound on the DC bias voltage. It is necessary to ensure that other mechanisms do not damage the devices. In particular it is necessary to investigate the breakdown characteristics of PSG, nitride and air with respect to the small dimensions in the device.

Typical spacing between the plates of the device is on the order of micrometers, with approximately 5 µm between pri-
5 Conclusion

We have presented a power conversion device compatible with standard silicon processing techniques which does not require magnetic components. The device has good isolation and scales well to higher frequencies, showing promise as a building block for a monolithic power supply.
Figure 11: Graph of Device Admittance with 50V DC bias in vacuum. Top graph is magnitude, bottom is phase.

