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Speed-Sensorless Vector Torque Control of Induction
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Abstract—Conditions for observability of a linearized smooth-
airgap induction machine model are examined, and limitations of
any speed-sensorless observer scheme based on such a model are
discussed. An approach for speed-sensorless flux estimation based
on singular perturbation theory is developed. This approach
relies on the natural time-scale separation between the electrical
and mechanical dynamics of the induction machine. A full-
order observer of an induction machine is presented, incor-
porating a correction term which has an intuitive explanation
when one considers steady-state stator currents. Using singular
perturbation theory, convergence of the observer is shown for
all open-loop stable operating points of the induction machine,
with the exception of dc excitation. Sensitivity of the observer
to parameter deviations is discussed. Experimental results are
presented confirming the validity of the above approach.

Index Terms—Induction machines, singular perturbation the-
ory, speed-sensorless torque control.

I. INTRODUCTION

M ANY implementations of speed-sensorless flux estima-
tion schemes are based on the so-called back-EMF

approach, which assumes a smooth-airgap model of an induc-
tion machine and requires measurements of only stator voltage
and/or current. Several papers [1]–[5] present experimental
data showing the effectiveness of these methods over a wide
range of operating conditions. However, these articles do not
consider the effect of operating point on convergence of the
estimator in their stability analyses. For example, none of these
methods can converge for dc excitation.

We propose an approach to speed-sensorless flux estimation
using singular perturbation theory [6], which is based on
the presumption that the electrical variables of an induction
machine have significantly faster dynamics than the me-
chanical variables. As such, the flux and current dynamics
evolve on a time scale on which the rotor speed appears
constant. Consistently, the mechanical rotor dynamics can be
analyzed under the assumption that the electrical dynamics are
converged to a quasi-steady-state value, which is a function of
the slowly varying rotor speed. These assumptions allow us
to study the electrical and mechanical dynamics separately,
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simplifying analysis. This approach for analyzing induction
machine dynamics is discussed in [7]. We believe that singular
perturbation theory is a natural approach to studying electrical
machine systems.

We begin with a brief introduction to singular perturbation
theory, which provides a framework for studying two-time-
scale systems. Next, we discuss the conditions necessary for
small-signal observability of an induction machine model
using linear system theory. This allows conclusions on the
limitations of any estimator based on the smooth-airgap model.
We then develop a full-order observer of an induction machine.
The observer incorporates a correction term which is injected
into the observer subsystem corresponding to the mechanical
dynamics. We use singular perturbation theory to show that the
observer converges asymptotically for all stable steady-state
operating points, with the exception of dc excitation, provided
the mechanical dynamics are slow compared to the electrical
dynamics. We then analyze sensitivity of the observer to
parameter deviations. Experimental data verifies the technique.

II. SINGULAR PERTURBATION THEORY

The two-time-scale approach can be applied to systems
where the state variables can be split into two sets, one
having “fast” dynamics, the other having “slow” dynamics.
The difference between the two sets of dynamics can be
distinguished by the use of a small multiplying scalar.
A linear state–space system with appropriate structure is
represented by

(1)

(2)

The small parameter is introduced to emphasize that the
portion of the state vector represented by evolves on a
slower time scale than that represented by. In the limiting
case, as 0, the slow variables become constant.
Provided the fast dynamics are stable (eigenvalues of
have negative real parts), the fast variables converge to a quasi-
steady-state value that is dependent upon the slow variables,
i.e.,

(3)

When studying the slow dynamics, we shift time frames by
introducing a new time scale . The dynamics then
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become

(4)

(5)

Then, in the limiting case, where 0, the fast dynamics
become so fast that can be considered to be instantaneously
determined by (3). The slow dynamics can then be written as

(6)

Singular perturbation theory provides a framework for this
simplifying analysis. Specifically providedis small enough,
conclusions drawn from the separate analyses of reduced
subsystems concerning stability, observability, etc., also apply
to the underlying system [6]. In the context of our analysis of
induction machine dynamics, we consider the electromagnetic
variables as “fast” and the mechanical variables as “slow.”

III. I NDUCTION MACHINE MODEL

The notation used throughout the remainder of this paper
is presented in Table I. We use a standard two-axis smooth-
airgap model for the induction machine, with stator current
and rotor flux as the electrical state variables and rotor speed
and load torque as the mechanical state variables:

(7)

(8)

(9)

(10)

(11)

(12)

The variable represents the angle corresponding to the cho-
sen reference frame of the system. In the stationary reference
frame, 0, and in the electrical reference frame .
We denote variables in the electrical reference frame with a
superscript (e.g., ). For the following analysis, we choose
the stator voltage as the reference vector in the electrical
reference frame, hence, and 0.

We denote steady-state electrical variables with a tilde
(e.g., ). In electrical steady state, we can write the stator

TABLE I
NOTATION—PARAMETERS GIVEN WERE TAKEN FROM A FOUR-POLE

INDUCTION MACHINE RATED AT 3 HP, 60 Hz, 220 V LINE–LINE, AND 9A

current and rotor flux as a function of stator voltage, electrical
frequency, and rotor speed:

(13)

Note that we include mechanical dynamics in our model,
where the machine load is modeled by a constant load torque
term and a linear damping term. Although the assumption of
constant load torque is made here and in the analysis of the
observer, the experimental data show that the observer is also
effective with other loads.

IV. OBSERVABILITY OF INDUCTION MACHINE

We now analyze the conditions under which the model of the
smooth-airgap induction machine is observable. First, we note
that the model is unobservable if the rotor flux is identically
zero, because the rotor speed is introduced into the electrical
dynamics through the back-EMF . However, in steady
state, the rotor flux is given by

(14)

hence, the steady-state rotor flux is zero only in the trivial
case of zero stator voltage excitation and, so, in the following
analysis, we assume .
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We study small-signal observability by linearizing the above
induction machine model about an operating point and apply-
ing the concepts of observability from linear system theory [8].
We study the system in the electrical reference frame, hence,
the resulting linearized model will be time invariant, although
dependent upon operating point. The linearized induction
machine dynamics are given by

(15)

(16)

(17)

(18)

(19)

To test for observability we form the observability matrix:

(20)

The observability matrix for the linearized induction ma-
chine model in variable form is too large to be included in
this paper (in our analysis, the matrix was generated using the
analytical softwareMAPLE).

The linearized system is observable if and only if there is
no vector that satisfies

(21)

As shown in the Appendix, the vector

(22)

is the only vector that can satisfy (21) and does so only if the
electrical frequency is zero. Hence, the small-signal model
of the smooth-airgap induction machine model is observable
for all operating points, except for dc excitation. In the case of
dc excitation, and, hence, no information about the

rotor dynamics (i.e., speed and/or torque) is available. We note
that observability of the small-signal model is the requirement
for arbitrary assignment of the observer eigenvalues.

V. TWO-TIME-SCALE APPROACH TOOBSERVER DESIGN

We denote observer variables with a hat (e.g.,). The
full-order observer is given by

(23)

(24)

(25)

(26)

where is an injection term designed to
correct the mechanical dynamics of the observer and will be
discussed in more detail in the following.

We denote the error between observer and machine variables
using the convention . The nonlinear error dynamics
are then given by

(27)

(28)

(29)

We now consider convergence of the observer. The follow-
ing analysis is limited to small-signal error dynamics of
the observer about a steady-state operating point. Although
small-signal stability is a minimal requirement, experiments
characterizing the response of the observer show that it also
works under large transient conditions.

We prove convergence of the observer using singular per-
turbation theory [6]. With this approach, we assume that the
electrical error dynamics (27) are significantly faster than
the mechanical error dynamics (28) and (29). Hence, when
analyzing the electrical error dynamics, we thus assume that
the rotor speed error is essentially constant. Analysis presented
in [9] reveals that, for any electrical frequency and rotor
speed , the matrix is exponentially stable.
Hence, the electrical error dynamics converge to a quasi-
steady-state value which is a function of the rotor speed
error:

(30)

For this reason, no injection term is used in the electrical
subsystem dynamics.
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Fig. 1. Torque–speed curve.

We now analyze the “slow” mechanical error dynamics
separately, with the view that the fast electrical dynamics
have converged to the quasi-steady state given in (30). For
example, we consider the electromagnetic torque errorto
have reached a steady-state value. Using (13) and (30),
we can write as a function of the operating point of the
machine (as characterized by, , and ), and the rotor
speed error :

(31)

The linear coefficient is equivalent to ,
the slope of the steady-state torque–speed curve for open-loop
voltage excitation, as shown in Fig. 1. We note for future
reference that is negative in the open-loop
stable operating region of the induction machine.

We now discuss the correction term . The
formulation of this term can be understood by considering
the locus of steady-state stator currents as a function of rotor
speed, as shown in Fig. 2. From Fig. 2, it is evident that one
can uniquely relate the steady-state stator current vector to
the rotor speed. Furthermore, for a given stator voltage and
excitation frequency, both and will be on the same locus,
with their positions depending on and , respectively. In
order to develop the correction term we create vectors
and , such as those shown in Figs. 3 and 4, where

is a vector in the stator current direct-quadrature plane
the coordinates of which are geometrically enclosed in the
arc formed by the stator current locus. There is a monotonic
dependence between the anglebetween these two vectors and
the rotor speed error. Instead of calculating, however, we use
the cross product of the two vectors to form our correction
term:

(32)

Provided 180 , has the same sign as
and, therefore, the same sign as the rotor speed error.

Hence, can be used to correct estimated
rotor speed.

Fig. 2. Calculated stator current locus in electrical reference frame aligned
with the stator voltage, as a function of rotor speed.vsd = 190 V, fe = 60

Hz, typical motor parameters. The “x” on the locus corresponds to zero slip
frequency.

Fig. 3. Graphical description of correction term using coordinates corre-
sponding to center of stator current locus.

We examine two particular choices for . One choice, ,
corresponds to the geometric center of the locus, as shown in
Fig. 3:

(33)

The other choice, , corresponds to the theoretical steady-
state stator current at infinite rotor speed, as shown in Fig.
4:

(34)

Both choices for have features making them desirable.
It is intuitively clear from Figs. 3 and 4 that the choice of
will yield a greater sensitivity to the rotor speed error than
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Fig. 4. Graphical description of correction term using coordinates corre-
sponding to stator current at infinite rotor speed.

. However, has the disadvantage that, for extremely
large speed errors, can become greater than 180, in which
case the sign of the cross-product term differs from the sign
of the rotor speed error. The vectors and are
never more than 180apart and, so, is an
effective correction term for all rotor speed errors.

In electrical steady state, can also be
written as a function of the operating point and the speed
error, using (13) and (30) and the property 0

(35)

As we are assuming small-signals, we neglect the higher
order terms of and focus on the linear component

. Analytical expressions for and
are presented in (36) and (37) at the bottom of the page.
Inspection of the above expressions reveals that> 0 and

> 0 for all possible operating points, with the exception
of dc excitation. In the case of dc excitation, the stator current
locus collapses to a single point , hence,
and the correction term vanishes. As discussed in Section IV,
all speed estimation schemes that use only stator voltage and
current measurements and assume the smooth-airgap model
have this same limitation. That is, the stator current and voltage
do not contain any information about the rotor speed at dc.

Fig. 5 presents normalized three-dimensional (3-D) plots of
, , and for a range of operating points, characterized

Fig. 5. Normalized 3-D plots ofhcc; hc1, andg� as functions of electrical
and slip frequency, with a contour plot ofg� demarcating regions of positive
and negative sign.

by the electrical and slip frequencies. Also shown is a contour
plot of demarcating its regions of positive and negative sign.
Recall that is the slope of the steady-state torque–speed
curve for open-loop voltage excitation.

Assuming that the electrical error dynamics have settled to
their quasi-steady-state value, we can write the mechanical
dynamics in linearized form:

(38)

(39)

Provided the induction machine is operating in the open-
loop stable operating range [i.e., < 0], it can
be easily shown that the matrix is exponentially stable
if > 0, stable if 0, and
unstable if < 0.

In the following, we use the term to conceptually
separate the time scales of the electrical and mechanical
dynamics. In other words, provided the moment of inertia
is sufficiently large, the mechanical dynamics will be slow
enough with respect to the electrical dynamics to validate the
independent analysis.

We have now shown stability of both the fast and slow error
dynamics. To prove stability of the entire system we use Corol-
lary 3.1 of Kokotovic [6]. This corollary guarantees asymptotic
stability of the error dynamics provided the following are true.

1) and are exponentially stable.
2) The “slow” dynamics are “slow” enough, i.e., is

less than some upper bound.

(36)

(37)
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Fig. 6. Steady-state observer rotor flux error due to deviations inRs using
correction termfcc({s; {̂s; ves ; !e), !s = 0.

The upper bound is difficult to determine. For a given
steady-state operating point , we can derive a lower bound for

[1, eq. (2.18)]. However, as this is only a lower bound for
, it is desirable to determine the gains through simulation or

experimentation, in order to achieve satisfactory performance.

VI. PARAMETER SENSITIVITY

This section analyzes the effect of errors in the observer
parameters on the observer’s performance. As many field-
oriented torque-control schemes used in practice are rotor-flux
based, we analyze the effect of parameter deviation on the
steady-state rotor flux angle and magnitude. Analysis is limited
to operating points where the slip frequency is set to one-
tenth the value of the electrical frequency. We first calculate

for a given operating point. We then alter a parameter in

the observer model and calculate such that the correction
term is identically zero, i.e., 0 is
satisfied. This corresponds to the condition when the observer
has converged to its steady-state value.

Figs. 6–8 present angular and magnitude errors of the
observer rotor flux due to deviations in the parameters, ,
and , respectively. The correction term makes the rotor flux
completely insensitive to and highly insensitive to in
steady state and, therefore, sensitivity to these parameters is
not presented in this paper. In this analysis, we chose .
The sensitivity analysis for is not presented, as it is similar
to that of .

It is apparent from Figs. 6–8 that the observer is highly sen-
sitive to deviations in and at low electrical frequencies.
As stator resistance can vary markedly due to temperature,
it is desirable to either include a temperature-compensated
model for or implement a stator resistance estimation
scheme. The parameter can also vary due to magnetic
saturation. However, we note that the above observer can
readily incorporate a nonlinear magnetics model, such as the
one presented in [10].

VII. I MPLEMENTATION

We implemented the observer on a 90-MHz personal com-
puter which samples stator voltages and currents and com-

Fig. 7. Steady-state observer rotor flux error due to deviations inM using
correction termfcc({s; {̂s; ves ; !e), !s = 0.

Fig. 8. Steady-state observer rotor flux error due to deviations inL`s using
correction termfcc({s; {̂s; ves ; !e), !s = 0.

mands stator voltage values with sampling time
s. The stator current and voltage measurements are fil-

tered with second-order 1-kHz antialiasing filters. The com-
puter numerically integrates (23)–(25) using the third-order
Adams–Bashforth method [11]. In order to generate the correc-
tion term , the computer must transform the
motor and observer stator currents into the electrical reference
frame with respect to the stator voltage. This is done using
the transformation

(40)

Knowledge of the electrical frequency is also necessary to de-
termine . We calculate electrical frequency
using a formula presented in [12]

(41)

where is calculated using a band-limited numerical dif-
ferentiation scheme with a bandwidth of 1000 rad/s. The
limited bandwidth does not present a problem, as the electrical
frequency calculation is used only in the slow dynamics.

We tested the observer by implementing torque steps at
low rotor speeds. Torque commands are generated through
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Fig. 9. Torque step from 0 to 18 N�m. Plots, going clockwise from the top
left, are estimated torque, observer rotor speed, direct and quadrature motor
stator current, and quadrature and direct observer stator current. Currents are
displayed in the electrical reference frame with respect to rotor flux.

Fig. 10. Torque step from 18 to 0 N�m. Plots as in Fig. 9.

Fig. 11. Torque step from no torque to rated torque, locked rotor. Plots as
in Fig. 9.

control of the direct and quadrature components of stator
flux in the rotor flux reference frame, as presented in [12].
Figs. 9 and 10 show the result of torque step commands with
a 40-kW separately excited dynamometer providing resistive
loading for the induction machine. Fig. 11 shows the results
of a locked-rotor test, with a torque step from zero to rated
torque. Although the rotor was locked, this information was
not supplied to the observer. We estimate torque using the
cross product of estimated stator flux and measured stator
current, i.e., . Also presented in the plots are estimated
rotor speed and observer and motor stator currents in the
electrical reference frame with respect to the rotor flux.

For these experiments, we use the correction term
. In order to reduce the effect of the

induction machine operating point on the correction term,
we choose variable gains

and .
If we neglect the small constant in the denominator, which is
included to avoid a singularity at dc excitation, we have

1000 and
.

The motor used in the experiments is a three-phase four-
pole wound-rotor induction machine rated at 3 hp, 220 V
line-to-line, and 9 A. The motor is driven by a commercial
pulsewidth-modulated (PWM) insulated gate bipolar transistor
(IGBT) inverter rated at 36 A and 460 V. The microprocessor
control provided in the inverter was replaced with custom
hardware that directly accesses the gate drive modules. This
hardware consists of a three-phase 15-kHz PWM modulator
that interfaces with two-axis command voltages supplied by
the personal computer. Hall-effect sensors within the inverter
measure the stator currents and 1001 voltage probes measure
the stator voltages.

The control scheme is shown to work well, allowing stable
torque steps at low and zero electrical frequencies. A brief
disturbance can be seen in the locked-rotor test (Fig. 11) as the
commanded torque changes from rated torque to zero torque.
This is because the electrical frequency changes from a posi-
tive number to zero, where the system becomes unobservable.
Note, however, that the observer/machine system eventually
settles.

VIII. A NALYSIS OF ANOTHER FULL-ORDER OBSERVER

The two-time-scale approach can also be used to analyze
other speed-sensorless control schemes. For example, we
consider the full-order adaptive observer presented in [2]. This
observer is a convenient choice for analysis, as it uses the
same model for electrical dynamics presented in this paper
[see (23)]. Although [2] discusses the use of feedback injection
into the electrical dynamics, this is not implemented in their
experiments and, so, we do not include this feedback injection
in the following analysis.

For the mechanical dynamics, [2] assumes constant rotor
speed and estimates this speed using the following correction
term:

(42)

By assuming that the electrical error variables have converged
to the quasi-steady state of (30), we can write the rotor speed
error dynamics in terms of the rotor speed error and the
operating point of the machine (13):

(43)

Once again, we assume small signals and, therefore, neglect
the higher order terms of (43). Based on the assumptions of
singular perturbation theory, the rotor speed error dynamics
are locally asymptotically stable if > 0 and
unstable if < 0.

Fig. 12 shows a normalized 3-D plot and contour plot of
using the motor parameters presented in this
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Fig. 12. Normalized 3-D plot ofhck and contour plots ofhck (solid line) and
g� (dashed line) demarcating regions of positive and negative sign. Regions
of positive and negative sign ofhck are specified. Typical motor parameters.

paper. The contour plot of is superimposed
over for reference.

Although > 0 for a wide range of operating
conditions, there exists a range of operating points in the
generating region ( < 0) where it becomes negative and,
hence, the observer does not converge under the assumptions
of the singular perturbation theory. We note, however, that
only a limited portion of this unstable range overlaps with the
stable operating region of the induction machine, as shown in
Fig. 12.

IX. CONCLUSION

We have shown singular perturbation theory to be an
effective tool in the analysis of induction machine observers.
Using the assumption of separate time scales, a full-order
observer has been designed that converges at all operating
points, with the exception of dc excitation. Although the
technique was used in this paper to estimate rotor speed, the
same approach could be used to estimate other parameters of
an induction machine that are slowly varying, such as stator
resistance. Further study is warranted to explore the usefulness
of this approach.

APPENDIX

We now seek to prove that the vectorshown in (22) satis-
fies (21), i.e., we seek to show that there exists a combination
of the columns of that sum to zero:

(44)

where the are the components of the vector. Inspection
of (19) (the first two columns of which are linearly
independent and the remaining columns of which contain
zeros) reveals that any such combination cannot contain the

first two columns, hence, 0. We therefore focus on
linear combinations of the last four columns.

Next we look at (see (45) at the bottom of the page).
From this, we can surmise that, , and must satisfy the
following condition:

(46)

Without loss of generality, we can set 1, as scalar
multiples of the will still satisfy (21). We can then solve
for and :

(47)

We note that , , and are unique to within a scalar
multiple. It remains to determine , if it exists. We now
consider . The actual matrix, however, is quite large
and complex, hence, we shall break it into columns in order
to display it effectively

(48)

(49)

(50)

(51)

To determine if exists and, if so, its value, we first find
the result of the sum ,
which we calculate using (47) and (51):

(52)

(45)
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If the system is unobservable, then there must exist a scalar
such that

(53)

or

(54)

Note that the vector on the left-hand side of (54) is orthog-
onal to , whereas the right-hand side contains components
parallel and orthogonal to . Therefore, for to exist, the
component of the right-hand side parallel tomust disappear
(assuming that is nonzero, as previously stated). This occurs
if and only if 0. Hence, 0 is a requirement for the
system to be unobservable.

If 0, then we can determine from (54):

(55)

It can then be shown (although the calculations are extensive
and were performed usingMAPLE) that, provided 0,

(56)

hence, the smooth-airgap induction machine model is locally
observable everywhere, except for dc excitation.
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