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Speed-Sensorless Vector Torque Control of Induction
Machines Using a Two-Time-Scale Approach

Heath HofmannStudent Member, IEEEANd Seth R. Sandersember, IEEE

Abstract—Conditions for observability of a linearized smooth- simplifying analysis. This approach for analyzing induction
airgap induction machine model are examined, and limitations of machine dynamics is discussed in [7]. We believe that singular

any speed-sensorless observer scheme based on such a model adE?erturbation theory is a natural approach to studying electrical
discussed. An approach for speed-sensorless flux estimation base .
machine systems.

on singular perturbation theory is developed. This approach > ” o . ] .
relies on the natural time-scale separation between the electrical e begin with a brief introduction to singular perturbation
and mechanical dynamics of the induction machine. A full- theory, which provides a framework for studying two-time-
order observer of an induction machine is presented, incor- scale systems. Next, we discuss the conditions necessary for
porating a correction term which has an intuitive explanation small-signal observability of an induction machine model

when one considers steady-state stator currents. Using singular = . i ¢ th This all USi th
perturbation theory, convergence of the observer is shown for using linear system theory. IS allows conclusions on the

all open-loop stable operating points of the induction machine, limitations of any estimator based on the smooth-airgap model.
with the exception of dc excitation. Sensitivity of the observer We then develop a full-order observer of an induction machine.

to parameter deviations is discussed. Experimental results are The observer incorporates a correction term which is injected

presented confirming the validity of the above approach. into the observer subsystem corresponding to the mechanical
Index Terms—Induction machines, singular perturbation the- dynamics. We use singular perturbation theory to show that the
ory, speed-sensorless torque control. observer converges asymptotically for all stable steady-state

operating points, with the exception of dc excitation, provided
the mechanical dynamics are slow compared to the electrical

dynamics. We then analyze sensitivity of the observer to

M ANY implementations of speed-sensorless flux estimas ameter deviations. Experimental data verifies the technique.
tion schemes are based on the so-called back-EMF

approach, which assumes a smooth-airgap model of an induc-
tion machine and requires measurements of only stator voltage [I. SINGULAR PERTURBATION THEORY

and/or current. Several papers [1]-[5] present experimentahhe two-time-scale approach can be applied to systems
data showing the effectiveness of these methods over a Wiggere the state variables can be split into two sets, one
range of operating conditions. However, these articles do NRving “fast” dynamics, the other having “slow” dynamics.
consider the effect of operating point on convergence of thge difference between the two sets of dynamics can be
estimator in their stability analyses. For example, none Oftheéf%tinguished by the use of a small multiplying scatar

methods can converge for dc excitation. A linear state-space system with appropriate structure is
We propose an approach to speed-sensorless flux eSt'maFlé)&esented by

using singular perturbation theory [6], which is based on

I. INTRODUCTION

the presumption that the electrical variables of an induction d
machine have significantly faster dynamics than the me- g Tf =Auzs + A (1)
chanical variables. As such, the flux and current dynamics d
evolve on a time scale on which the rotor speed appears g% = (Anzy + Agpts). (2)

constant. Consistently, the mechanical rotor dynamics can be

analyzed under the assumption that the electrical dynamics aR¢ Small parametee is introduced to emphasize that the
converged to a quasi-steady-state value, which is a functionR§frtion of the state vector represented by evolves on a
the slowly varying rotor speed. These assumptions allow g§Wer time scale than that representedzby In the limiting

to study the electrical and mechanical dynamics separatéffSe, asc — 0, the slow variables:, become constant.
Provided the fast dynamics are stable (eigenvalue\of
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become TABLE |

NoTATION—PARAMETERS GIVEN WERE TAKEN FROM A FOUR-POLE

d 1 INDUCTION MACHINE RATED AT 3 HP, 60 Hz, 220 V LNE-LINE, AND 9A
Pt (Anizy + Arows) (4)

T €

d Electrical Variables

ks = Ay + Ao, ©) Ar = [Ard Arg)T Rotor Flux Vector

Then, in the limiting case, where — 0, the fast dynamics
become so fast that; can be considered to be instantaneously
determined by (3). The slow dynamics can then be written as

% Ty = (—An AT A + Az, = Aux,. (6)
Singular perturbation theory provides a framework for this
simplifying analysis. Specifically providedis small enough,
conclusions drawn from the separate analyses of reduced
subsystems concerning stability, observability, etc., also apply
to the underlying system [6]. In the context of our analysis of
induction machine dynamics, we consider the electromagnetic

variables as “fast” and the mechanical variables as “slow.”

Ill. INDUCTION MACHINE MODEL

The notation used throughout the remainder of this paper
is presented in Table I. We use a standard two-axis smooth-
airgap model for the induction machine, with stator current

15 = (154 2sq]
Us = ['Usd 'Usq]
We

Electrical Parameters

Rs = 1.59Q

R, = 1.86Q

L, = 116.5mH
L, =116.7mH
M =109.5mH
02 =L,L, — M?
Lyy=Ls— M
Lyp=L,—M

Mechanical Variables
Wr

Ws = We — Wy

e = $LaT I

Te

Mechanical Parameters

H = 0.8kg m?
B =o0.1kem?
8

Matriz Notation
I

Stator Current Vector
Stator Voltage Vector
Electrical Frequency

Stator Resistance

Rotor Resistance

Stator Inductance

Rotor Inductance

Mutual Inductance
Leakage Term

Stator Leakage Inductance
Rotor Leakage Inductance

Rotor Velocity

Slip Frequency
Electromagnetic Torque
Load Torque

Moment of Inertia of Rotor
Damping Constant of Rotor

2 x 2 Identity Matrix

and rotor flux as the electrical state variables and rotor speed g I?Arth(_)gor;al Rotatiqnh Matrix
and load torque as the mechanical state variables: mxn anz"nlxcgmzlflf:s with m rows
d L
s . s 5 Us
i) =a i |+ |2 @
! ! 0 current and rotor flux as a function of stator voltage, electrical
d 1 :
Zwr = 7 (Te = 70 = Buy) (g freduency, antil rotor speed L
d [zz } a1 =t
—71, =0 9 | = A (we, wr) | 0 (13)
dth 9) AS f 0
M
Te = L—ZZJ)\T (10) Note that we include mechanical dynamics in our model,
T where the machine load is modeled by a constant load torque
term and a linear damping term. Although the assumption of
Ar(p, wp) = constant load torque is made here and in the analysis of the
(RsL?2 + R.M?) . M (R, observer, the experimental data show that the observer is also
——T T = |=I-wJd ; :
o2L, o2 \ L, effective with other loads.
R.M R, .
I I 7.1 (h—wr)d IV. OBSERVABILITY OF INDUCTION MACHINE
(11) We now analyze the conditions under which the model of the
smooth-airgap induction machine is observable. First, we note
that the model is unobservable if the rotor flux is identically
I= [1 0} J= [0 _1}_ (12) zero, because the rotor speed is introduced into the electrical
01 1.0 dynamics through the badkMF Afw,. However, in steady

The variablep represents the angle corresponding to the ch%t—ate’ the rotor flux is given by

sen reference frame of the system. In the stationary referencg. _ R.M

frame, p = 0, and in the electrical reference frame= w.. " (RawsLy + RrweL,)? + (R R, — 02wew,)?

We denote variables in the electrical reference frame with a X [(RrRs — wewso2)I — (we Ry Ly + wy Ry Ly )I|0S

superscript (e.g.,:5). For the following analysis, we choose (14)

the stator voltage as the reference vector in the electrical

reference frame, hence;, = ||vs|| andvg, = 0. hence, the steady-state rotor flux is zero only in the trivial
We denote steady-state electrical variables with a tilad@se of zero stator voltage excitation and, so, in the following

(e.g., 7). In electrical steady state, we can write the stat@malysis, we assumg: # 0.
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We study small-signal observability by linearizing the abovetor dynamics (i.e., speed and/or torque) is available. We note
induction machine model about an operating point and appljrat observability of the small-signal model is the requirement
ing the concepts of observability from linear system theory [8for arbitrary assignment of the observer eigenvalues.

We study the system in the electrical reference frame, hence,
the resulting linearized model will be time invariant, although \/  Two-TIME-SCALE APPROACH TOORSERVER DESIGN
dependent upon operating point. The linearized induction

machine dynamics are given by We denote observer variables with a hat (eig), The

full-order observer is given by

9 Azt = Ad(x)Aat + 2 ﬁ;’s} (15) s . L,
o o ] -awanlp]+|Z e
AZZ = C[A.’L’e (16) dt )\1’ )\1‘ 02><1
Ay(z®) = d . r .. . A e
02,1 0251 priciiaT {7e = T¢ — BOp — K, fer (15, 25, U5, we)}(24)
Ajp(we, wy) d 1
J)‘f 0251 —Te = — K‘I‘fcw(zsv isv U§7 we) (25)
i 5 1 dt H
_ T heT T eT _ = _ - N M U AN
HLT )\’l‘ J ‘ HL7 7’5 J H H Te = L_1 7’5 J)\,, (26)
01x2 ‘ 012 0 0 where f..(zs, is, vS, w.) iS an injection term designed to
(17) " correct the mechanical dynamics of the observer and will be
. discussed in more detail in the following.
Zsé We denote the error between observer and machine variables
e_ | A using the conventioiz = Z—x. The nonlinear error dynamics
z (18) ‘
Wr are then given by
T
d 67,5 o . 67,5 ) J)\1
Ce=1[ O2x4]. (19) dt [MJ =As(p, wr) [MJ L buwr (27)

JA
To test for observability we form the observability matrix:

C, d(bw,) 1 . e
C.A, el {67c — 61y — Bbéwy — Ko for (s, 15, Vg, we)}
CA?2 (28)
C, = 4 (20)
° C/A} d(ér) 1 L .
CZAZL i H K‘rfca:(za ts, Vs, we)- (29)
C/A}

We now consider convergence of the observer. The follow-
The observability matrixC, for the linearized induction ma- ing analysis is limited to small-signal error dynamics of

chine model in variable form is too large to be included ithe observer about a steady-state operating point. Although
this paper (in our analysis, the matrix was generated using grmall-signal stability is a minimal requirement, experiments

analytical softwareMAPLE). characterizing the response of the observer show that it also
The linearized system is observable if and only if there isorks under large transient conditions.
no vectora # 0 that satisfies We prove convergence of the observer using singular per-
turbation theory [6]. With this approach, we assume that the
Coa = 0121 (21)  electrical error dynamics (27) are significantly faster than
As shown in the Appendix, the vector the mgchanical error dynamics (28)_ and (29). Hence, when
analyzing the electrical error dynamics, we thus assume that
0251 the rotor speed error is essentially constant. Analysis presented
R, -1 in [9] reveals that, for any electrical frequency and rotor
_ <_TI_W7‘J> I 22 speedw,, the matrix A (we, w,) iS exponentially stable.
= 1 (22) Hence, the electrical error dynamics converge to a quasi-
M T . steady-state value which is a function of the rotor speed
-B - Rt wll2 [15 " (R I+ w, L) A error: N
is the only vector that can satisfy (21) and does so only if the | 67 1 -——J|+. 9
electrical frequency. is zero. Hence, the small-signal model {65\&} =—4; (we, w”)[ (32 ])‘"&d” +0(6wr). (30)

of the smooth-airgap induction machine model is observable
for all operating points, except for dc excitation. In the case &br this reason, no injection term is used in the electrical
dc excitationg; = v;/ R, and, hence, no information about thesubsystem dynamics.
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Stable Operating Region

-

/

Wr

Fig. 1. Torque-speed curve. 0

tsd

We now analyze the “slow” mechanical error dynamicsig. 2. Calculated stator current locus in electrical reference frame aligned
separately, with the view that the fast electrical dynamiggth the stator voltage, as a function of rotor speedq =190 V, f. =60
have converged to the quasi-steady state given in (30). %}é&t}g‘lgsl motor parameters. The™ on the locus corresponds to zero slip
example, we consider the electromagnetic torque érroito
have reached a steady-state vafife. Using (13) and (30),
we can writeé7. as a function of the operating point of the i® A
machine (as characterized by, w., andw,.), and the rotor *
speed errofbw;.:

M e e ~
6ﬁ::17(@TjAr—i§TJAﬂ
M ~e T e ~eT 7\e ~eT e >
=T (6T JOX. + 85" IAL + 357 T6AD) ied
=g, (v%, we, wy)bw, + O(6w?). (31) wr = we
The linear coefficien, (v¢, w., w,) is equivalent té7. /dw,., ., wr = %00
the slope of the steady-state torque—speed curve for open-loop S
voltage excitation, as shown in Fig. 1. We note for future wr b
reference thatg. (v¢, we, w,) iS negative in the open-loop is — sc

stable operating region of the induction machine.

We now discuss the correction terfn, (zs, is, v<, w.). The
formulation of this term can be understood by considering
the locus of steady-state stator currents as a function of rotor
speed, ,as shown in Fig. 2. From Fig. 2, it is evident that Or&% 3. Graphical description of correction term using coordinates corre-
can uniquely relate the steady-state stator current vVectorsianding to center of stator current locus.
the rotor speed. Furthermore, for a given stator voltage and
excitation frequency, bottf andi¢ will be on the same locus,
with their positions dependmg ap. anday,, respectively. In corresponds to the geometric center of the locus, as shown in
order to develop the correction term we create vectprsi, g, 3
and ¢ — 25, such as those shown in Figs. 3 and 4, whereg' )

We examine two particular choices fqr.. One choicey,.,

15 1S @ vector in the stator current direct-quadrature plane L
the coordinates of which are geometrically enclosed in the R2L, + Lso?w?
arc formed by the stator current locus. There is a monotonic tse = 5 M? vy (33)
dependence between the angjleetween these two vectors and —{o° T T )We
the rotor speed error. Instead of calculatthdnowever, we use R2L. & L.o%02
. sy + Lsow;
the cross product of the two vectors to form our correctloP . .
term: he other choice;;~., corresponds to the theoretical steady-
state stator current at infinite rotor speed, as shown in Fig.
fcm(zsv isv U§7 we) = (7'2 - Zsa})TJ(iZ - 7/51;) 4
=1l —1 75 —15z|| sin 6. (32) 2 -1
s = e[ 1S = tas %33::<}@I4—%7u%J> of. (34)
.

Provided|6| < 187, f..(is, i, v¢, we) has the same sign as
6 and, therefore, the same sign as the rotor speed égrar Both choices for,, have features making them desirable.
Hence, f..(7s, %S, v¢, we) can be used to correct estimatedt is intuitively clear from Figs. 3 and 4 that the choice:gf

rotor speed. will yield a greater sensitivity to the rotor speed error than
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“ negative
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Fig. 5. Normalized 3-D plots of.., h.oc, andg, as functions of electrical
and slip frequency, with a contour plot gf demarcating regions of positive
and negative sign.

Fig. 4. Graphical description of correction term using coordinates corre-

sponding to stator current at infinite rotor speed. . . . .
P 9 P by the electrical and slip frequencies. Also shown is a contour

plot of g, demarcating its regions of positive and negative sign.
1500 HOWever, ;. has the disadvantage that, for extremelRecall thatg. is the slope of the steady-state torque—speed
large speed errorg| can become greater than 28t which  curve for open-loop voltage excitation.
case the sign of the cross-product term differs from the signAssuming that the electrical error dynamics have settled to
of the rotor speed error. The vectafs- .., andi, — ;. areé their quasi-steady-state value, we can write the mechanical
never more than 180apart and, SOf.o(is, s, vS, we) IS @n  dynamics in linearized form:
effective correction term for all rotor speed errors.

In electrical steady statef.,(is, is, v, w.) can also be Swp] 1 Swy 38
written as a function of the operating point and the speed Ste | T HT |61 | (38)
error, using (13) and (30) and the propeityJz = 0 (gr — Kohew — B) —1

e A, =7 w e . 39
fcm(zsv isv US, we) = (52 - Zsa})TJ(is - st) |: Kby 0:| ( )

~e T ~ ~e
= — lsz J o s s — lsz . . . . : H H

(fj ! )T (f ) Provided the induction machine is operating in the open-
= (75 — toa)” J6T loop stable operating range [i.e,(v¢, w,, w.) < 0], it can
= hep(VE, Wy, we)bw, +O(8w?). (35) be easily shown that the matrid, is exponentially stable

As we are assuming small-signals, we neglect the highpy 'cz(Vs @rs we) > O, stable ifhe,(v;, wp, we) = 0, and
9 gnals, g Mihstable ithe, (ve, wr, w.) < 0.

order terms oféw, and focus on the linear com onen%m
T P In the following, we use the term/H to conceptually

. . )
hea (V5 wr, wG)é.w v Analytical expressions fohc. and heo separate the time scales of the electrical and mechanical
are presented in (36) and (37) at the bottom of the pagg, . . .
: . ynamics. In other words, provided the moment of ineHia
Inspection of the above expressions reveals that> 0 and . - . . .
. . . ; . Is sufficiently large, the mechanical dynamics will be slow

heso > 0 for all possible operating points, with the exception . . ) :

o o enough with respect to the electrical dynamics to validate the
of dc excitation. In the case of dc excitation, the stator current

locus collapses to a single poiny/R,, henceq = i¢ = independent analysis.
pses gep 5 s = by T lew We have now shown stability of both the fast and slow error
and the correction term vanishes. As discussed in Section |

all speed estimation schemes that use only stator voltage I){(r])amics. To prove stability of the entire system we use Corol-
P y g ?%%3.1 of Kokotovic [6]. This corollary guarantees asymptotic
al

current measurements and assume the smooth-airgap mg ility of the error dynamics provided the following are true.

have this same limitation. That is, the stator current and voltage
do not contain any information about the rotor speed at dc. 1) Ay and A, are exponentially stable.

Fig. 5 presents normalized three-dimensional (3-D) plots of2) The “slow” dynamics are “slow” enough, i.el/H is
Ree, heoo, andg, for a range of operating points, characterized ~ less than some upper bouigl

4,2 .2
O f e M=wZR,v$;

hcc = = 36

a(éwr) Swr=0 2(R§Lr + westo—Q)[(werRs + weLSRT)Q + (RSRT - w€w502)2] 30

- 0fecoo _ M*Ywio®Ls + RI L )wiR}ved (37)
7 9(6wy) Seo, =  (RsR, — wews02)?2 + (RsLyws + Ry Lyw.)?)? (w204 + R2L2)
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Fig. 6. Steady-state observer rotor flux error due to deviationg.irusing Fig. 7. _ Steady-state observer rotor flux error due to deviation¥/ imsing
correction termfcc(ts, is, v5, we), ws = 0. correction termfec(is, is, v<, we), ws = 0.

The upper boundy is difficult to determine. For a given

05 1sx,_‘sc

steady-state operating point , we can derive a lower bound for &~
€ [1, eqg. (2.18)]. However, as this is only a lower bound for &
€o, It is desirable to determine the gains through simulation or 3
experimentation, in order to achieve satisfactory performance. <

= — L =0.75L,

VI. PARAMETER SENSITIVITY -+ Ly=o9r,

2 : , —m L= 1L

This section analyzes the effect of errors in the observer
parameters on the observer's performance. As many field-
oriented torque-control schemes used in practice are rotor-flux
based, we analyze the effect of parameter deviation on the
steady-state rotor flux angle and magnitude. Analysis is limited
to operating points where the slip frequency is set to one-
tenth the value of the electrical frequency. We first calculate
A¢ for a given operating point. We then alter a parameter frg. 8. Steady-state observer rotor flux error due to deviatiods inusing

the observer model and calculake such that the correction correction tefMfee(rs. is, vs, we), ws = 0.
term is identically zero, i.€.(i¢ — 15,)TJ (i — 15,) = O is
satisfied. This corresponds to the condition when the obser
has converged to its steady-state value.

Figs. 6-8 present angular and magnitude errors of t
observer rotor flux due to deviations in the paramefeysii,
and L, respectively. The correction term makes the rotor fl
completely insensitive td2,. and highly insensitive td.,, in
steady state and, therefore, sensitivity to these parameter
not presented in this paper. In this analysis, we chgse- ...
The sensitivity analysis far,., is not presented, as it is similar
to that of .. W = 1 |: Vsd Usq:| 2., (40)

It is apparent from Figs. 6-8 that the observer is highly sen- * sl [=vsq vsa] ”
sitive to deviations ink, andM at low electrical frequenCieS. Know|edge of the electrical frequency is also necessary to de-

As stator resistance can vary markedly due to temperatu@&mine f.., (1, is, v¢, w.). We calculate electrical frequency
it is desirable to either include a temperature-compensaigging a formula presented in [12]

model for R; or implement a stator resistance estimation

ﬂ I S == L= 1251,

10 20 30

o

(a -HASVIAZ (%)

0 50
Electrical Frequency (Hz)

=

\%?nds stator voltage values with sampling tiffie = 100

u#S. The stator current and voltage measurements are fil-
heéed with second-order 1-kHz antialiasing filters. The com-
puter numerically integrates (23)—(25) using the third-order
L&dams—Bashforth method [11]. In order to generate the correc-
tion term f...(¢5, 25, v<, w. ), the computer must transform the
glfgor and observer stator currents into the electrical reference
rame with respect to the stator voltage. This is done using
the transformation

scheme. The parametéd/ can also vary due to magnetic We = 03 Jus (41)
saturation. However, we note that the above observer can [[os]]?

readily incorporate a nonlinear magnetics model, such as thikere 7, is calculated using a band-limited numerical dif-
one presented in [10]. ferentiation scheme with a bandwidth of 1000 rad/s. The

limited bandwidth does not present a problem, as the electrical
frequency calculation is used only in the slow dynamics.

We implemented the observer on a 90-MHz personal com-We tested the observer by implementing torque steps at
puter which samples stator voltages and currents and cdiow rotor speeds. Torque commands are generated through

VII. | MPLEMENTATION
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induction machine operating point on the correction term,
we choose variable gain&,, = 1000/(||¢¢ — sz |2 —
1s2|| +0.001) and K, = 1/(|[sS — 52| |2 — 2s2|| + 0.001).
If we neglect the small constant in the denominator, which is
included to avoid a singularity at dc excitation, we have
Ko fee(ts, 15, vs) = 1000sin @ and K feo(is, is, v5) =
sin 6.
The motor used in the experiments is a three-phase four-
pole wound-rotor induction machine rated at 3 hp, 220 V
e S line-to-line, and 9 A. The motor is driven by a commercial
t (sec) pulsewidth-modulated (PWM) insulated gate bipolar transistor
, , , (IGBT) inverter rated at 36 A and 460 V. The microprocessor
Fig. 9. Torque step from 0 to 18-M. Plots, going clockwise from the top

left, are estimated torque, observer rotor speed, direct and quadrature mGBptrOI prowded. in the inverter was replaC_Ed with CUStom_
stator current, and quadrature and direct observer stator current. Currentsiaedware that directly accesses the gate drive modules. This

1 3 4 0 1

2
t (sec)

displayed in the electrical reference frame with respect to rotor flux. hardware consists of a three-phase 15-kHz PWM modulator
that interfaces with two-axis command voltages supplied by
o O ; o S S S the personal computer. Hall-effect sensors within the inverter
@ 0f 2, NS B measure the stator currents and 1Q0voltage probes measure
S o Seiuisising IR e the stator voltages.

The control scheme is shown to work well, allowing stable
torque steps at low and zero electrical frequencies. A brief
disturbance can be seen in the locked-rotor test (Fig. 11) as the
commanded torque changes from rated torque to zero torque.
This is because the electrical frequency changes from a posi-
tive number to zero, where the system becomes unobservable.
5 Note, however, that the observer/machine system eventually
t (sec) settles.

1 3 4 0 1

2
t (sec)

Fig. 10. Torque step from 18 to 0-M. Plots as in Fig. 9.
VIIl. A NALYSIS OF ANOTHER FULL-ORDER OBSERVER

The two-time-scale approach can also be used to analyze
other speed-sensorless control schemes. For example, we
consider the full-order adaptive observer presented in [2]. This
observer is a convenient choice for analysis, as it uses the
same model for electrical dynamics presented in this paper
[see (23)]. Although [2] discusses the use of feedback injection
into the electrical dynamics, this is not implemented in their
experiments and, so, we do not include this feedback injection
e obd in the following analysis.

10 ' » : T o : 5 : For the mechanical dynamics, [2] assumes constant rotor
2 3 4 [1] 1 2 3 4 . . . . .
t (sec) t (sec) speed and estimates this speed using the following correction

LA .

15 (A)

ter
Fig. 11. Torque step from no torque to rated torque, locked rotor. Plots as

in Fig. 9. - —X?J(is —15). (42)

) By assuming that the electrical error variables have converged
control of the direct and quadrature components of stalgf ihe quasi-steady state of (30), we can write the rotor speed

flux in the rotor flux reference frame, as presented in [12,q, dynamics in terms of the rotor speed error and the
Figs. 9 and 10 show the result of torque step commands WHBerating point of the machine (13):

a 40-kW separately excited dynamometer providing resistive T
loading for the induction machine. Fig. 11 shows the results Sw, :_3\7, Joic
of a locked-rotor test, with a torque step from zero to rated . 2
torque. Although the rotor was locked, this information was = —hen(ve, wr, we)owy + Odwy). (43)
not supplied to the observer. We estimate torque using t@ace again, we assume small signals and, therefore, neglect
cross product of estimated stator flux and measured statioe higher order terms of (43). Based on the assumptions of
current, i.e.35\ZJz5. Also presented in the plots are estimatedingular perturbation theory, the rotor speed error dynamics
rotor speed and observer and motor stator currents in e locally asymptotically stable #.;(v¢, w;, w.) > 0 and
electrical reference frame with respect to the rotor flux.  unstable ifa.;(v¢, w;, we) < 0.

For these experiments, we use the correction termFig. 12 shows a normalized 3-D plot and contour plot of
Jec(ts, 25, v5, we). In order to reduce the effect of theh. (v, w,, we.) using the motor parameters presented in this
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first two columns, hencey; = a» = 0. We therefore focus on

linear combinations of the last four columns.
Next we look atC,A, (see (45) at the bottom of the page).

From this, we can surmise tha$, a4, anda; must satisfy the

_ _'_ following condition:
L)

M
:| —CL5—2J)\7€;202><1. (46)
g

o2L, o2 04

L o Without loss of generality, we can set = 1, as scalar
multiples of thea; will still satisfy (21). We can then solve

IR _1
as | _ MR? _ % % e
[GJ = <02L,, I = w,J) 2 JXE. 47
10 We note thatas, a4, anda; are unique to within a scalar
multiple. It remains to determines, if it exists. We now

1

+ i B t
rmegative \ f
t

Il

-10 5 |
0 0 L 5
10 f, (Hz) f, bz

f, (Hz)
Fig. 12.  Normalized 3-D plot of ., and contour plots ofi; (solid line)and consider C,A?. The actual matrix, however, is quite large
Aid complex, hence, we shall break it into columns in order

g- (dashed line) demarcating regions of positive and negative sign. Regi
S, . . .
to display it effectively

of positive and negative sign &f.; are specified. Typical motor parameter

paper. The contour plot of,(v¢, w;., w.) is superimposed (CrAD)12 =
over h.; for reference. <R§L3 +2R,R.M*  R.M* M’RZ 2)1
Although i1 (v¢, w;., we) > 0 for a wide range of operating ot otL2 o2 L2 ¢
el Ly Qwe R, M? MQw,,R,,>J
oL, o?L,

conditions, there exists a range of operating points in the
generating region«{; < 0) where it becomes negative and, + 2
(48)

hence, the observer does not converge under the assumptions
of the singular perturbation theory. We note, however, that + 2L H xexet
only a limited portion of this unstable range overlaps with theC A2 "
stable operating region of the induction machine, as shown ﬁ”l (Af)s 4=
Fig. 12. MR,R, M3R} 2ww.M RM Muw?
ot 2 2 o2L2 + o? I
IX. CONCLUSION . %w. R, M . w L. MR, . R.M>3w,
o2L, ot otL,

We have shown singular perturbation theory to be an
(49)

effective tool in the analysis of induction machine observers.
Using the assumption of separate time scales, a full-order
observer has been designed that converges at all operating 5
(CrAf)s =
R,L R.M? R,
+—+ B) J} AL

2w, MR, M2
+ 2L, )J + o2L.H (IA)(T)

points, with the exception of dc excitation. Although the
technique was used in this paper to estimate rotor speed, the {_(w T < r
same approach could be used to estimate other parameters o2 ‘ ! o c2L, L,
(50)
(51)

an induction machine that are slowly varying, such as stator
e M
(Sé[A?)G - O_Q—HJ)\f

resistance. Further study is warranted to explore the usefuln
To determine ifag exists and, if so, its value, we first find

of this approach.
the result of the sumz(CyA2)3 + as(CrAZ)s +a5(CeA2)s,

APPENDIX
We now seek to prove that the vectoshown in (22) satis- \yhich we calculate using (47) and (51):

fies (21), i.e., we seek to show that there exists a combination ) ) )
a3(CeAy)s + as(CrAf)a + as(CeAf)s

of the columns ofC, that sum to zero:
= (CrA])s,4 [Zﬂ +(CeAD)s

a1Co1 + a2Co2 + a3Co3 + a4Co4 + a5Co5 + asCos = 0 (44)
. M M
where thea; are the components of the vector Inspection = 5 qwl+ |B+ m
of C, (19) (the first two columns of which are linearly BNt
independent and the remaining columns of which contain .[ZZT(RTI+w7,L7,J))\i]:|J})\f;_ (52)
zeros) reveals that any such combination cannot contain the
L? M2 MR, M M
Boly ¥ BeMZy | gMBryp M5 Mgy, (45)
o2L, o2 o2

Cehr= |- =157
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If the system is unobservable, then there must exist a scalg

ag such that
a3(CeA7)s + as(CrA})s + a5(CrA])s = —as(CrA7)s
(53)
or

a L
So2H

M

. M
== (et {8+ G

(R 4w, Lo d )Aﬂ}J) xS (54)

parallel and orthogonal ta<. Therefore, foras to exist, the
component of the right-hand side parallebtbmust disappear

(6]
(7]

(8]
El

(10]

(assuming thak? is nonzero, as previously stated). This occurs

if and only if w. = 0. Hencew, = 0 is a requirement for the

system to be unobservable.
If w. = 0, then we can determing; from (54):

ag = —{BH + ZZT(R’I‘I + wv’Lv’J))‘i]}'

(55)

2 LD

It can then be shown (although the calculations are extens

and were performed usingAPLE) that, providedv. = 0O,

Coa = 012x1 (56)

d:h

machinery.

hence, the smooth-airgap induction machine model is locally

observable everywhere, except for dc excitation.
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