Speed-Sensorless Vector Torque Control of Induction Machines Using a Two-Time-Scale Approach

Heath Hofmann
Department of Electrical Engineering and Computer Science
University of California, Berkeley

Seth R. Sanders

Abstract — After conditions for observability of a linearized induction machine model are examined, an approach for speed-sensorless flux estimation based on two-time-scale theory is developed. This approach relies on the natural time-scale separation between the electrical and mechanical dynamics of the induction machine. A full-order observer of an induction machine is presented, incorporating a correction term which has an intuitive explanation when one considers steady-state stator currents. Using two-time-scale theory, convergence of the observer is shown for all stable operating points of the induction machine with the exception of DC excitation. Sensitivity of the observer to parameter deviations is discussed. Experimental results are presented confirming the validity of the above approach.

I. INTRODUCTION

Many implementations of speed-sensorless flux estimation schemes are based on the so-called back-emf approach, which assumes a smooth-airgap model of an induction machine and requires measurements of only stator voltage and/or current. Several articles [1-5] present experimental data showing the effectiveness of these methods over a wide range of operating conditions. However, these articles do not consider the effect of operating point on convergence of the estimator in their stability analyses. For example, none of these methods can converge for DC excitation.

We propose an approach to speed-sensorless flux estimation using two-time-scale theory [6], which is based on the presumption that the electrical variables of an induction machine have significantly faster dynamics than the mechanical variables. As such, we can consider the electrical and mechanical dynamics separately, simplifying analysis. This approach for analyzing induction machine dynamics is discussed in [7]. We believe that two-time-scale theory is a natural approach for studying electrical machine systems.

We first discuss the conditions necessary for small-signal observability of an induction machine model using linear system theory. This presents a framework for discussing the limitations of any estimator based on the smooth-airgap model. We then develop a full-order observer of an induction machine. The observer incorporates a correction term which is injected into the observer subsystem corresponding to the mechanical dynamics. We use two-time-scale theory to show that the observer converges asymptotically for all stable steady-state operating points with the exception of DC excitation, provided the mechanical dynamics are slow compared to the electrical dynamics. We then analyze sensitivity of the observer to parameter deviations. Experimental data verifies the validity of the approach.

II. INDUCTION MACHINE MODEL

The notation used throughout the paper is presented in Table I. We use a standard 2-axis smooth-airgap model for the induction machine, with stator current and rotor flux as the electrical state variables and rotor speed and load torque as the mechanical state variables.

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} \tau_s \\ \lambda_r \end{bmatrix} &= A_f(\hat{\rho}, \omega_r) \begin{bmatrix} \tau_s \\ \lambda_r \end{bmatrix} + \begin{bmatrix} \frac{L_c}{L_r} V_s \\ 0 \end{bmatrix}, \\
\dot{\tau}_c &= \frac{1}{H} (\tau_e - \tau_t - B \omega_r), \\
\dot{\tau}_t &= 0, \\
\tau_e &= \frac{M}{L_r} i_r^T J \lambda_r,
\end{align*}
\]

\[
A_f(\hat{\rho}, \omega_r) = \begin{bmatrix}
-\frac{(R_s L_r^2 + R_s M^2)}{\sigma T_L r} & -\hat{\rho} J \\
\frac{R_c M}{L_r} & -B c \left(\hat{\rho} \tau_e - \omega_r J \right)
\end{bmatrix}
\]

\[
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\
J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]

The variable \(\rho\) represents the angle corresponding to the chosen reference frame of the system. In the stationary
reference frame $\dot{\rho} = 0$, and in the electrical reference frame $\dot{\rho} = \omega_r$. We denote variables in the electrical reference frame with a superscript e (e.g., i_e^e). For the following analysis we choose the stator voltage as the reference vector in the electrical reference frame, hence $v_{sd}^e = \|v_s\|$ and $v_{sq}^e = 0$.

We denote steady-state electrical variables with a tilde (e.g., i_e^e). In electrical steady state we can write the stator current and rotor flux as a function of stator voltage, electrical frequency, and rotor speed.

$$
\begin{bmatrix}
\tilde{i}_r \\
\tilde{\lambda}_r^e
\end{bmatrix}
= A_f^{-1}(\omega_e, \omega_r)
\begin{bmatrix}
\frac{L_{ds}}{\sigma} v_s^e \\
0
\end{bmatrix}
$$

Note that we include mechanical dynamics in our model, where the machine load is modeled by a constant load torque term and a linear damping term. Although the assumption of constant load torque is made here and in the analysis of the observer, the experimental data show that the observer is also effective with other loads.

III. Observability of Induction Machine

We now analyze the conditions under which the model of the smooth-airgap induction machine is observable. First we note that the model is unobservable if the rotor flux is identically zero, because the rotor speed is introduced into the electrical dynamics through the back- emf $\lambda_r^e \omega_r$. However, we prove in [8] that in electrical steady-state the rotor flux is zero only in the trivial case of zero stator voltage excitation, and henceforth we assume $\lambda_r^e \neq 0$.

We study small-signal observability by linearizing the above induction machine model about an operating point and applying the concepts of observability from linear system theory [9]. Observability of the linearized system is the minimal requirement for exponential convergence of an observer. We study the system in the electrical reference frame; hence, the resulting linearized model will be time-invariant, although dependent upon operating point. The linearized induction machine dynamics are given by

$$
\frac{d}{dt} \Delta x^e = A_f(\tilde{x}^e) \Delta x^e + \begin{bmatrix}
\Delta v_s^e \\
\Delta i_s^e \\
\Delta i_r^e \\
0
\end{bmatrix},
$$

$$
\Delta i_r^e = C_l \Delta x^e,
$$

$$
A_f(\tilde{x}^e) =
\begin{bmatrix}
A_f(\omega_e, \omega_r) & 0_{2 \times 1} & 0_{2 \times 1} \\
0_{1 \times 2} & 0_{1 \times 2} & 0_{2 \times 1}
\end{bmatrix}
$$

$$
x^e =
\begin{bmatrix}
\tilde{i}_r \\
\tilde{\lambda}_r^e \\
\omega_r \\
\eta
\end{bmatrix}
$$

$$
C_l = \begin{bmatrix}
1 & 0_{2 \times 4}
\end{bmatrix}
$$

To test for observability we form the observability matrix:

$$
C_o =
\begin{bmatrix}
C_l \\
C_l A_l \\
C_l A_l^2 \\
C_l A_l^3 \\
C_l A_l^4 \\
C_l A_l^5
\end{bmatrix}
$$

The observability matrix C_o for the linearized induction machine model in variable form is too large to be included.

TABLE I

Notation

<table>
<thead>
<tr>
<th>Electrical Variables</th>
<th>Rotor Flux Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_r</td>
<td>$[\lambda_{rd} \lambda_{rq}]^T$</td>
</tr>
<tr>
<td>i_s</td>
<td>Stator Current Vector</td>
</tr>
<tr>
<td>v_s</td>
<td>$[v_{sd} \ v_{sq}]^T$</td>
</tr>
<tr>
<td>ω_r</td>
<td>Electrical Frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical Parameters</th>
<th>Stator Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s</td>
<td>1.59 Ohm</td>
</tr>
<tr>
<td>R_p</td>
<td>1.86 Ohm</td>
</tr>
<tr>
<td>L_s</td>
<td>116.5 mH</td>
</tr>
<tr>
<td>L_r</td>
<td>116.7 mH</td>
</tr>
<tr>
<td>M</td>
<td>109.5 mH</td>
</tr>
<tr>
<td>σ^2</td>
<td>$L_{sL_r} - M^2$</td>
</tr>
<tr>
<td>L_{ds}</td>
<td>$L_d - M$</td>
</tr>
<tr>
<td>L_{qs}</td>
<td>$L_q - M$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Variables</th>
<th>Rotor Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_r</td>
<td>$\omega_e - \omega_r$</td>
</tr>
<tr>
<td>τ_e</td>
<td>$\frac{M}{J} i_{rs} \dot{\lambda}_r^e$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical Parameters</th>
<th>Moment of Inertia of Rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.84 kg m2</td>
</tr>
<tr>
<td>B</td>
<td>$\beta \frac{M}{J}$</td>
</tr>
</tbody>
</table>

206
in this paper (the matrix was generated using the analytical software MAPLE). We refer the interested reader to [8]. The linearized system is observable if and only if there is no vector \(a \neq 0 \) that satisfies
\[
C_0 a = 0.
\]
(14)

As shown in [8], the vector
\[
a = \begin{bmatrix}
0_{3 \times 1} \\
\left(\frac{R_y}{L_z} I - \omega_r J \right)^{-1} J \lambda^c_r \\
1 \\
-B - \frac{M}{R_z^2 + \omega^2 L_z^2} \begin{bmatrix}
v^c_s^T (R_r I + \omega_r L_r J) \lambda^c_r
\end{bmatrix}
\end{bmatrix}
\]
(15)

is the only vector that can satisfy (14), and does so only if the electrical frequency \(\omega_e \) is zero. Hence the smooth-airgap induction machine model is locally observable everywhere except for DC excitation.

IV. Two-Time Scale Approach to Observer Design

We denote observer variables with a hat (e.g., \(\hat{i}_s \)). The full-order observer is given by
\[
\frac{d}{dt} \begin{bmatrix}
\hat{i}_s \\
\hat{\lambda}_r
\end{bmatrix} = A_f (\hat{\rho}, \hat{\omega}_r) \begin{bmatrix}
\hat{i}_s \\
\hat{\lambda}_r
\end{bmatrix} + \begin{bmatrix}
\frac{L_z^2}{L_r} v^c_s \\
0
\end{bmatrix},
\]
(16)

\[
\dot{\omega}_r = \frac{1}{H} \{ \dot{\tau}_e - \dot{\tau}_t - B \dot{\omega}_r - K_f f_{cx} (i_s, i_s, v^c_s, \omega_e) \},
\]
(17)

\[
\dot{\tau}_t = K_f f_{cx} (i_s, i_s, v^c_s, \omega_e),
\]
(18)

\[
\dot{\tau}_e = \frac{M}{L_r} i_s^c J \lambda^c_r,
\]
(19)

where \(f_{cx} (i_s, i_s, v^c_s, \omega_e) \) is an injection term designed to correct the mechanical dynamics of the observer.

We denote the error between observer and machine variables using the convention \(\delta x = \hat{x} - x \). The nonlinear error dynamics are then given by
\[
\frac{d}{dt} \begin{bmatrix}
\delta i_s \\
\delta \lambda_r
\end{bmatrix} = A_f (\rho, \omega_r) \begin{bmatrix}
\delta i_s \\
\delta \lambda_r
\end{bmatrix} + \begin{bmatrix}
\frac{M}{\sigma J} \delta \lambda_r \\
0
\end{bmatrix} \delta \omega_r,
\]
(20)

\[
\frac{d}{dt} (\delta \omega_r) = \frac{1}{H} \{ \delta \tau_e - \delta \tau_t - B \delta \omega_r - K_f f_{cx} (i_s, i_s, v^c_s, \omega_e) \},
\]
(21)

\[
\frac{d}{dt} (\delta \tau_t) = K_f f_{cx} (i_s, i_s, v^c_s, \omega_e)
\]
(22)

We now consider convergence of the observer. The following analysis is limited to small-signal error dynamics of the observer about a steady-state operating point. Although small-signal stability is a minimal requirement, experiments characterizing the response of the observer show that it also works under transient conditions.

We prove convergence of the observer using two-timescale theory [6]. With this approach we assume that the electrical error dynamics (20) are significantly faster than the mechanical error dynamics (21, 22). Hence when analyzing the electrical error dynamics one can assume that the rotor speed error is essentially constant. Analysis presented in [10] reveals that for any electrical frequency \(\omega_e \) and rotor speed \(\omega_r \) the matrix \(A_f (\omega_e, \omega_r) \) is exponentially stable. Hence the electrical error dynamics converge to a quasi-steady-state value which is a function of the rotor speed error.

\[
\begin{bmatrix}
\delta \tau^e_s \\
\delta \lambda^c_r
\end{bmatrix} = -A_f^{-1} \begin{bmatrix}
\omega_e \\
\omega_r
\end{bmatrix} \begin{bmatrix}
-M \\
J
\end{bmatrix} \lambda^c_r \delta \omega_r + O (\delta \omega_r^2)
\]
(23)

We now analyze the “slow” mechanical error dynamics separately, with the view that the fast electrical dynamics have converged to the quasi-steady-state given in (23). For example, we consider the electromagnetic torque error \(\delta \tau_e \) to have reached a steady-state value \(\delta \tau_e^* \). Using (7) and (23), we can write \(\delta \tau_e \) as a function of the operating point of the machine (as characterized by \(v^c_s, \omega_e \), and \(\omega_r \)), and the rotor speed error \(\delta \omega_r \).

\[
\delta \tau_e = \frac{M}{L_r} \begin{bmatrix}
v^c_s^T J \lambda^c_r - v^c_s^T J \lambda^c_r^* \\
\delta \tau^e_s T J \delta \lambda^c_r + \delta \tau^e_s T J \lambda^c_r + \tau^e_s T J \delta \lambda^c_r
\end{bmatrix}
\]
\[
= g_r (v^c_s, \omega_e, \omega_r) \delta \omega_r + O (\delta \omega_r^2)
\]
(24)

The linear coefficient \(g_r (v^c_s, \omega_e, \omega_r) \) is equivalent to \(\frac{\partial \tau^e_s}{\partial \omega_r} \), the slope of the steady-state torque-speed curve for open-loop voltage excitation as shown in Figure 1. We note for future reference that \(g_r (v^c_s, \omega_e, \omega_r) \) is negative in the open-loop stable operating region of the induction machine.

We now discuss the correction term \(f_{cx} (i_s, i_s, v^c_s, \omega_e) \). The formulation of this term can be understood by considering the locus of steady-state stator currents as a function of rotor speed, as shown in Figure 2. From Figure 2 it is evident that one can uniquely relate the steady-state stator current vector to the rotor speed. Furthermore, for a given stator voltage and excitation frequency both \(v^c_s \) and \(i^c_s \) will be on the same locus, with their positions depending on \(\omega_r \) and \(\omega_e \), respectively. In order to develop the correction term we create the vectors \(v^c_s - i_{sx} \) and \(v^c_s - i_{sx} \), such as shown in Figures 3 and 4, where \(i_{sx} \) is a vector in the stator current direct-quadrature plane whose coordinates are geometrically enclosed in the arc formed by the stator current locus. There is a monotonic dependence between the angle \(\theta \) between these two vectors and the rotor speed error. Instead of calculating \(\theta \),
shown in Figure 3.

\[t_{sc} = \begin{bmatrix} \frac{R_s L_r}{R_s^2 L_r + L_s \sigma^2 \omega_e^2} \\ -\left(\frac{\sigma^2 + \Delta_T^2}{\omega_e} \right) \omega_e \\ \frac{R_s^2 L_r + L_s \sigma^2 \omega_e^2}{R_s L_r + L_s \sigma^2 \omega_e^2} \end{bmatrix} v_{id}^e \] (26)

The other choice, \(t_{s \infty} \), corresponds to the theoretical steady-state stator current at infinite rotor speed, as shown in Figure 4.

\[t_{s \infty} = \left(R_s I + \frac{\sigma^2}{L_r \omega_e J} \right)^{-1} v_s^e \] (27)

Both choices for \(t_{sx} \) have features making them desirable. It is intuitively clear from Figures 4 and 3 that the choice of \(t_{sc} \) will yield a greater sensitivity to the rotor speed error than \(t_{s \infty} \). However, \(t_{sc} \) has the disadvantage that for extremely large speed errors \(\theta \) can become greater than 180°, in which case the sign of the cross product term differs from the sign of the rotor speed error. The vectors \(\dot{t}_s - t_{s \infty} \) and \(\ddot{t}_s - t_{s \infty} \) are never more than 180° apart, and so \(f_{s \infty}(\dot{t}_s, \ddot{t}_s, v_s^e, \omega_e) \) is a valid correction term for all rotor speed errors.

In electrical steady-state, \(f_{sx}(\dot{t}_s, \ddot{t}_s, v_s^e, \omega_e) \) can also be written as a function of the operating point and the speed error, using (7), (23), and the property \(z^T J z = 0 \).

\[f_{sx}(t_s, \ddot{t}_s, v_s^e, \omega_e) = (\ddot{t}_s - t_{sx})^T J (\ddot{t}_s - t_{sx}) \]

\[= (\ddot{t}_s - t_{sx})^T J (\delta t_s + \ddot{t}_s - t_{sx}) \]
Provided the induction machine is operating in the stable operating range (i.e., \(g_r(v_r^*, \omega_r, \omega_e) < 0 \)), it can be easily shown that the matrix \(A_s \) is exponentially stable if \(h_{ex}(v_r^*, \omega_r, \omega_e) > 0 \), stable if \(h_{ex}(v_r^*, \omega_r, \omega_e) = 0 \), and unstable if \(h_{ex}(v_r^*, \omega_r, \omega_e) < 0 \).

In the following we use the term \(\frac{1}{\mathcal{H}} \) to conceptually separate the time scales of the electrical and mechanical dynamics. In other words, provided the moment of inertia \(\mathcal{H} \) is sufficiently large, the mechanical dynamics will be slow enough with respect to the electrical dynamics to validate the independent analysis.

We have now shown stability of both the fast and slow error dynamics. To prove stability of the entire system we use Corollary 3.1 of Kokotovic [6]. This corollary guarantees asymptotic stability of the error dynamics provided

- \(A_f \) and \(A_s \) are exponentially stable, and
- The \textquotedblleft slow\textquotedblright{} dynamics are \textquotedblleft slow\textquotedblright{} enough, i.e., \(\frac{1}{\mathcal{H}} \) is less than some upper bound \(\epsilon \).

The upper bound \(\epsilon \) is difficult to determine. However, for a given steady-state operating point we can use (2.18) of Kokotovic to derive a lower bound for \(\epsilon \) (see [8] for details).

\[
\epsilon \geq \frac{1}{\|A_f^{-1}(\omega_e, \omega_r)\| \left[a + b + 2(ab)^{1/2} \right]},
\]

\[a = \|A_s\|, \quad b = c\|A_f^{-1}(\omega_e, \omega_r)\| \|\delta \|,
\]
This lower bound supports the intuition that there are upper limits to the choices of gains K_ω and K_r that satisfy the assumptions of the two-time-scale theory. However, as (31) is only a lower bound for ϵ, it is desirable to determine the gains through simulation or experimentation in order to achieve satisfactory performance.

V. PARAMETER SENSITIVITY

This section analyzes the effect of errors in the observer parameters on the observer’s performance. As many field-oriented torque-control schemes used in practice are rotor-flux-based, we analyze the effect of parameter deviation on the steady-state rotor flux angle and magnitude. Analysis is limited to operating points where the slip frequency is set to one-tenth the value of the electrical frequency. We first calculate λ_0^e for a given operating point. Then we alter a parameter in the observer model and calculate λ_0^e such that $(\hat{i}_0^e - i_{0x})^T\mathbf{J}(\hat{i}_0^e - i_{0x}) = 0$ is satisfied. This corresponds to the condition when the observer has converged to its steady-state value.

Figures 6, 7, and 8 present angular and magnitude errors of the observer rotor flux due to deviations in the parameters R_s, M, and L_{ls}, respectively. The correction term makes the rotor flux completely insensitive to R_s and highly insensitive to L_{ls} in steady-state, and so sensitivity to these parameters is not presented in this paper. In this analysis we chose $i_{0x} = i_{0c}$. The sensitivity analysis for i_{0c} is not presented, as it is similar to that of i_{0c}.

It is apparent from Figures 6, 7, and 8 that the observer is highly sensitive to deviations in R_s, M, and L_{ls} at low electrical frequencies. As stator resistance can vary markedly due to temperature, it is desirable to either include a temperature-compensated model for R_s or implement a stator resistance estimation scheme. The parameters L_{ls} and M can also vary due to magnetic saturation. However, we note that the above observer can readily incorporate a nonlinear magnetics model, such as the one presented in [11].

VI. IMPLEMENTATION

We implemented the observer on a 90MHz personal computer which samples stator voltages and currents and commands stator voltage values with sampling time $T_s = 100\mu s$. The computer numerically integrates (16), (17), and (18) using the third-order Adams-Bashforth method [12]. In order to generate the correction term $f_{ex}(i_s, i_s^e, u_x^e, \omega_e)$, the computer must transform the motor

and observer stator currents into the electrical reference frame with respect to the stator voltage. This is done using the transformation

$$
\hat{i}_s^e = \frac{1}{\|u_s^e\|} \begin{bmatrix} v_{sd} & v_{sq} \\ -v_{sq} & v_{sd} \end{bmatrix} i_s
$$

(34)

Knowledge of the electrical frequency is also necessary to determine $f_{ex}(i_s, i_s^e, u_x^e, \omega_e)$. We calculate electrical frequency using a formula presented in [13].

$$
\omega_e = \frac{\hat{v}_s^T \mathbf{J} v_s}{\|v_s\|^2},
$$

(35)

where \hat{v}_s is calculated using a bandlimited numerical differentiation scheme.

We test the observer by implementing torque steps at low rotor speeds. Torque commands are generated through control of the direct and quadrature components

\[c = \sqrt{\left(\frac{M}{L_s} \left| \frac{i_s^e}{\lambda_x^e} \right| + K_\omega |i_s^e - i_{0x}| \right)^2 + H^2 K_r^2 |i_s^e - i_{0x}|^2} \]

(33)
Fig. 8. Steady-state observer rotor flux error due to deviations in L_d, using correction term $f_{cc} (i_x, i_y, v_x, \omega_e, \omega_e = \omega_e/10$

of stator flux in the rotor flux reference frame, as presented in [13]. Figures 9 and 10 show the result of torque step commands with a 40kW separately excited dynamometer providing resistive loading for the induction machine. Figure 11 shows the results of a locked rotor test, with a torque step from zero to rated torque. Although the rotor was locked, this information was not supplied to the observer. We estimate torque using the cross product of estimated stator flux and measured stator current, i.e., $3\lambda_f^T J_t$. Also presented in the plots are estimated rotor speed and observer and motor stator currents in the electrical reference frame with respect to the rotor flux.

Fig. 9. Torque step from 0 N·m to 18 N·m. Plots, going clockwise from the top left, are estimated torque, observer rotor speed, direct and quadrature motor stator current, and quadrature and direct observer stator current. Currents are displayed in the electrical reference frame with respect to rotor flux.

For these experiments we use the correction term $f_{cc} (i_x, i_y, v_x, \omega_e)$. In order to reduce the effect of the induction machine operating point on the correction term, we choose variable gains $K_\omega = \frac{1000}{\|i_x^2-i_x\| + \|i_y^2-i_y\| + .001}$ and $K_r = \frac{1}{\|i_x^2-i_x\| + \|i_y^2-i_y\| + .001}$. If we neglect the small constant in the denominator, which is included to avoid a singularity at DC excitation, we have $K_\omega f_{cc} (i_x, i_y, v_x) = 1000 \sin \theta$ and $K_r f_{cc} (i_x, i_y, v_x) = \sin \theta$.

The motor used in the experiments is a 3-phase, 4-pole wound rotor induction machine rated at 3 hp, 1800 rpm, and 220V line-to-line. The motor is driven by a commercial pulse-width-modulated (PWM) IGBT inverter rated at 36A and 460V. The microprocessor control provided in the inverter was replaced with custom hardware that directly accesses the gate drive modules. This hardware consists of a three phase 15kHz PWM modulator that interfaces with two-axis command voltages supplied by the personal computer. Hall-effect sensors within the inverter measure the stator current and 100:1 voltage probes measure the stator voltage.
VII. Analysis of Another Full-Order Observer

The two-time-scale approach can also be used to analyze other speed-sensorless control schemes. For example, we consider the full-order adaptive observer presented in [1]. This observer is a convenient choice for analysis, as it uses the same model for electrical dynamics presented in this paper (see (16)). Though reference [1] discusses the use of feedback injection into the electrical dynamics, this is not implemented in their experiments, and so we do not include this feedback injection in the following analysis.

For the mechanical dynamics, reference [1] assumes constant rotor speed, and estimates this speed using the following correction term:

$$\dot{\omega}_r = -\hat{\lambda}_r^T \mathbf{J} (\Omega_s - \omega_r)$$ \hspace{1cm} (36)

By assuming that the electrical error variables have converged to the quasi-steady-state of (23), we can write the rotor speed error dynamics in terms of the rotor speed error and the operating point of the machine (7).

$$\dot{\omega}_r = -\hat{\lambda}_r^T \mathbf{J} \delta \omega_r^e$$

$$= -h_{ck} (v_s^e, \omega_r, \omega_e) \delta \omega_r + O (\delta \omega_r^2)$$ \hspace{1cm} (37)

Once again we assume small signals and therefore neglect the higher-order terms of (37). Based on the assumptions of two-time-scale theory, the rotor speed error dynamics are locally asymptotically stable if $h_{ck} (v_s^e, \omega_r, \omega_e) > 0$, and unstable if $h_{ck} (v_s^e, \omega_r, \omega_e) < 0$.

Figure 12 shows a normalized 3-D plot and contour plot of $h_{ck} (v_s^e, \omega_r, \omega_e)$ using the motor parameters presented in this paper. The contour plot of $g_r (v_s^e, \omega_r, \omega_e)$ is superimposed over h_{ck} for reference. Though $h_{ck} (v_s^e, \omega_r, \omega_e) > 0$ for a wide range of operating conditions, there exists a range of operating points in the generating region ($\omega_s < 0$) where it becomes negative, and hence the observer does not converge under the assumptions of the two-time-scale theory. We note, however, that only a limited portion of this unstable range overlaps with the stable operating region of the induction machine, as shown in Figure 12.

VIII. Conclusion

We have shown two-time-scale theory to be an effective tool in the analysis of induction machine observers. Using the assumption of separate time scales, a full-order observer has been designed that converges at all operating points with the exception of DC excitation. Though the technique was used in this paper to estimate rotor speed, the same approach could be used to estimate other parameters of an induction machine that are slowly varying, such as stator resistance. Further study is warranted to explore the usefulness of this approach.

IX. Acknowledgements

This work has been supported by NSF Grant ECS-9358284. The authors would also like to thank Tzu-Yi Chen for her efforts in proofreading this manuscript.

REFERENCES

Fig. 12. Normalized 3-D plot of h_{ck} and contour plots of h_{ck} (solid line) and g_r (dashed line) demarcating regions of positive and negative sign. Regions of positive and negative sign of h_{ck} are specified. Typical motor parameters.