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ABSTRACT : This puper studies various bifurcations of periodic orbits in power electronic 
circuits : cyclic.fold b$ircations, period-doubling bifurcations, and b$ircations due to Poincark 

map discontinuities. Wefocus on circuits operating under closed-loop control and/or containing 
nonlineur reuctive components. Section III contains an exploration of cyclic fold biflrrcations 

and the associated resonantjump phenomenon in circuits containing suturable reactors. Section 
IV gives a comprehensive overview of period-doubling phenomena in closed-loop DC-DC 
conversion circuits. We study circuits with homeomorphic and unimodal Poincar; mups, those 

that period-double u single time and those that period-double repeated/y in a cascade to chaos. 
This section ends with a result relating non-genericity of u period-doubling bifurcation to ha!f’ 
wave orbital symmetry. An interesting feuture of power electronic circuits is that they muy 

have Poincurk mups that ure continuous but not everywhere differentiuble, or discontinuous. In 
Section V we study, in detail, btfurcation behavior in u thyristor controlled VAR compensator, 

understood in terms of PoincarP map discontinuities. We show that Poincarb map discontinuities 
are due to jumps in circuit switching times. We show how map discontinuities lead to steady 

state.jump phenomena, and distinguish between transient behavior related to switch time jumps 
and steady state bifurcations. The puper ends with an Appendix, in which concepts underlying 
cyclic fold b(furcationsfor the case qf’a continuous but not everywhere dllferentiable map are 
developed. 

1. Introduction 

Power electronic circuits are designed to process electrical energy, in contrast to 
the function of processing signals in many other circuits used in various branches 
of electrical engineering. Power electronic circuits in some form are used in virtually 
all types of electrical equipment, ranging from multi-megawatt power systems 
applications to milliwatt battery management circuitry. The function of a power 
electronic circuit is to condition and control the flow of electrical energy. Specifi- 
cally, this may mean to interface between AC and DC systems, change frequency in 
AC-AC conversion applications, provide electrical isolation, and provide voltage, 
current, and impedance matching. The most familiar circuits for providing voltage 
matching are the ubiquitous DC-DC converters. In the highest power applications 
used in utility systems, example circuits are static VAR compensators and rec- 
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tifier/inverter interfaces with high voltage DC (HVDC) transmission lines. At 
lower, but still substantial power ratings, power electronic circuits are used exten- 
sively in variable speed motor/generator control systems, in lighting systems, in 
photovoltaic interfaces, in welding, and in induction heating applications. 

Since the aim is to process energy, efficiency is usually of a primary concern. The 
reasons for this are twofold. First, the cost of energy may dictate a high efficiency 
solution. Examples occur in utility applications, battery powered and especially 
portable equipment, and aerospace applications among others. Second, whenever 
energy is processed inefficiently, heat is generated. The need to remove excess heat 
provides a premium on high efficiency operation in virtually all applications. 

Since power electronic circuits are designed to process energy efficiently, these 
circuits are designed with nominally lossless circuit elements. The circuit elements 
comprising a power electronic circuit include switches, implemented with tran- 
sistors, diodes, and thyristors, and reactive components including inductors, trans- 
formers, and capacitors. Depending on one’s point of view, motors and/or 
generators may also be viewed as viable circuit elements since these devices may 
be viewed as transformers interfacing the mechanical and electrical domains. 
Devices that are not included in power electronic circuits are resistive devices, 
including transistors operating in their active regions. As such, linear voltage 
regulators and classical power amplifiers are not viewed as power electronic circuits, 
here. 

It is the very nature of a circuit built from switches and reactive components, 
and designed to operate to process power that is of interest here. In the early work 
of Duffin (l), necessary conditions for the conversion of DC power to AC power 
were established. In particular, the article (1) applied Tellegen’s theorem and 
concepts of passivity and incremental passivity to establish that at least one 
incrementally active resistance must be present in the DC network of a power 
conversion circuit. Here, the DC network is defined as the network obtained by 
open-circuiting capacitors and eliminating branches in series with the capacitors, 
and by short-circuiting inductors and combining the nodes to which each inductor 
is connected. This result was extended in the work of Wolaver (2). We summarize 
some of these results in the following discussion. 

To begin, we introduce some of the terminology from (2) for a circuit operating 
in the steady state. Let each branch variable (i.e. branch current and branch 
voltage) be represented as the sum of a constant time-averaged component and 
a zero-mean time-varying component. For instance, a branch voltage can be ex- 

pressed in the form 

v(t) = a+?qt), (1) 

where ts is the (constant) time-averaged value of the voltage and 6(t) = 0. A branch 
element in the converter is termed DC active if it supplies average DCpower in the 
steady state, i.e. 

Note that an element that is DC active does not necessarily supply any average 
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real power to the rest of the circuit. A branch element is termed AC active if it 

supplies average ACpower, i.e. 

6L= (v-a)(i-T) = vi-z%< 0. 

Among the results obtained in (2) is the fact that every DCDC conversion circuit 
formed from interconnections of two-terminal devices must contain at least two 
nonlinear and/or time-varying resistances. In particular, one of these must be DC 
active to supply average power to the load. This element is often a diode. The other 
nonlinear/time-varying resistance must be AC active to convert power from the 
DC source to AC power which in turn can be rectified by the DC active resistance. 
The second nonlinear/time-varying resistance is often a controlled switch such as 
a transistor. The necessity of an AC active resistance is equivalent to the result 

stated by Duffin (1). 
In nearly all modern power conversion circuits, the AC active and DC active 

elements are transitors, diodes, or thyristors. Because of the relative simplicity of 
periodic steady states, as opposed to alternatives, nearly all modern power con- 
version circuits are designed to operate in a periodic steady state. Notable excep- 
tions occur in circuits that interface with AC systems where the normal steady state 
may usually be termed almost periodic. The periodicity is typically imposed by a 
clocked control circuit, an AC source, or in some other cases by the autonomous 
behavior of the circuit. Because of this periodicity, our focus in this paper is on 
periodic steady state operation of these circuits. As such, we develop the necessary 
mathematical tools-Poincare maps and their properties for studying the dynamics 
of these nominally periodic circuits. Specifically, Section II gives mathematical 
preliminaries on this for the remainder of the paper. 

The rest of the paper is a study of the type and genericity of various bifurcations 
of periodic orbits in power electronic circuits. Although some simple reasoning (3) 
leads one to conclude that a switched circuit built from incrementally passive 
resistors, linear reactive elements, and ideal switches will exhibit a unique steady 
state under open-loop operation and some mild topological conditions, our focus 
is on circuits operating under closed-loop control and/or containing nonlinear 
reactive components. 

Section I11 studies cyclic fold bifurcations and the associated resonant jump 
phenomenon in circuits containing saturable reactors. The tools from classical 
bifurcation theory that require differentiability of the Poincare map appear to be 
adequate for these examples. Section IV gives a comprehensive overview of period- 
doubling phenomena in closed-loop DC-DC conversion circuits. A substantial 
body of literature on this topic has emerged, and this section attempts to unify the 
literature with the theory, again based on differentiable Poincare maps. 

In Section V we study, in detail, bifurcation behavior in a thyristor controlled 
VAR compensator. The tools needed for understanding the dynamics in this 
example are substantially different from that available in the classical literature on 
bifurcation theory. In particular, the Poincare map arising in this example is neither 
differentiable nor continuous. In fact, bifurcations exist because of the nature of 
the implicitly controlled switch transitions in this circuit. We give a comprehensive 
analysis of the phenomenon. 
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II. Mathematical Preliminaries 

In this section we define Poincart maps for autonomous and non-autonomous 
nonlinear dynamical systems, and describe typical Poincare map derivations for 
power electronic circuits. The significance of Poincare map fixed points and the 
eigenvalues of the linearized map at a fixed point are also discussed. 

Sampling in switched circuits. Switched circuits in power electronics operate in 
cyclic fashion. Systems that have periodic solutions are usually analyzed by the 
Poincare map, which is a suitably chosen transverse hyperplane to trajectories of 
the corresponding continuous time system. Conceptually, the Poincare map is 
obtained by sampling the system trajectory as it intersects the hyperplane. Thus, a 
Poincare map is a form of discretization of a continuous time system. 

D&zing the PoincarP map. Consider an autonomous differential equation 
k = J’(x), XE R”. Denote its solution starting at s at time t = 0 by 4,(x) = @(t, x). 
The map $ : (t, x) + $(t, x) is called the Jtow of the vector field f(x). Let r be a 
periodic orbit of period T of the flow 4. We first take a local cross section S c R”, 
of dimension n - 1, such that (i) the flow 4 is everywhere transverset to S, and (ii) 
S intersects I- at a unique point p.1 Let % c S be a neighborhood of p. For q E % 

the$fivst return or PoincarP map P : C?Y -+ S is defined by 

where z(q) is the time it takes for the orbit based at q to first return to S. Thus 
z(p) = T and T(q) -+ T as q -+ p. Also, p is a fixed point of P. In local coordinates, 
P is a map from % c [w”+ ’ to KY-‘, so DP(p) has n- 1 eigenvalues, called the 

Floquet multipliers (or characteristic multipliers) associated with the periodic orbit 
r. 

For Y~OY~-~U~O~OHZOU.Y systems, a Poincare map may be defined by sampling the 
system flow 4,(x) = @(t, x) of the periodically forced system .? =f(x, t) = 
J’(x, t+ T) every T seconds, for a first return P(q) : = @T(q) = c$(T, q). 

A periodic orbit l- is asymptotically stable if and only if all the Floquet multipliers 
have magnitude less than 1. Consequently, p is a stable fixed point for the Poincare 
map if and only if r is stable. 

III. Cyclic Fold Bifurcations 

Suppose a parameterized continuous time system has a T-periodic orbit r, 
with trajectory x,(t) = x,(t+ T), and another T-periodic orbit lYr with trajectory 
x,(t) = x,(t+ T). The system undergoes a cyclic fold bifurcation (CFB) if the two 
periodic orbits coalesce and then “disappear” as a parameter embedded in the 

t This means the inner product (f’(x), n(_x)) # 0 for all x E S, where n(.u) is the normal to 
S at x. 

fSuch a construction could result in a non-unique PoincarC map. In special cases, this non- 
uniqueness of construction could lead to different discrete time observations of bifurcations 
involving periodic orbits. 
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x2 

FIG. 1. (a) A cyclic fold bifurcation. Two real periodic orbits coalesce and disappear as a 
parameter is varied. (b) The corresponding folding fixed point path, with the orbits sampled 

at time t = 0, x, (0) and X,(O) serving as fixed points. 

circuit equations is varied monotonically, as illustrated in Fig. 1 (a). In the case of 
a differentiable Poincare map, if one of the coalescing orbits is stable, then the 
other must be unstable, and if n- 1 of a total of n Floquet multipliers lie within 
the unit circle, then a generic CFB must consist of two coalescing orbits of opposite 
stability. Other stability combinations are possible for Poincare maps that are 
continuous but not everywhere differentiable, as will be shown in the Appendix. 
Cyclic fold bifurcations are considered generic to nonlinear dynamical systems (4), 
and have been observed in power electronic circuits such as the ferroresonant 
circuit example discussed in this section (S-7). 

Because power electronic circuits contain state controlled switches, Poincart 
maps of power electronic circuits are not necessarily everywhere differentiable. 
They may be everywhere differentiable, or continuous and piecewise differentiable, 
or even discontinuous, depending on the state feedback function controlling the 
switches, the discontinuities in the differential equations describing the circuit. 
Cyclic fold bifurcations may occur in circuits with differentiable, piecewise differ- 
entiable or discontinuous Poincare maps. Because there are differences in the 
mathematical characterization and stability properties of cyclic fold bifurcations 
occurring in systems with these different types of Poincare maps, the topic may be 
organized by Poincare map class. We discuss differentiable Poincare maps in this 
section. Continuous, but non-differentiable Poincare maps are discussed in the 
Appendix. 

3.1. Cyclic folds-dz~jkrentiable PoincarC maps 

Classical bifurcation theory mostly concerns itself with the bifurcations of 
differentiable Poincare maps (4). If the point pi of the periodic orbit Ti is a fixed 
point of the map Pi. (pi = P,(pJ), then the eigenvalues of the linearization of the 
differentiable map Pi at pl, pin p(DP,(p,)), reflect the stability of the fixed point pi 
and its corresponding periodic orbit Tl. They also serve to determine the occurrence 
of a bifurcation. 

As long as no eigenvalue is on the unit circle (lpi1 # 1, Vi), the periodic orbit Tj, 
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FIG. 2. CFB normal form xk+, = xk +x: +2 for various L. (a) At 1 = -0.5, there are two 
solutions, one stable and the other unstable. (b) At 1” = 0 the two solutions coalesce in a 

CFB. (c) At i = 0.5, the map has no solutions. 

is hyperbolic and non-bifurcating. However, when IpL,I = 1, the periodic orbit 
undergoes some type of bifurcation. A cyclic fold bzyurcation of a differentiable 
Poincare map corresponds to a single eigenvalue ,ui~,u(DPj;) passing through + 1 
transversally. 

If an eigenvalue pi = 1 at a fixed point pi of PnO, then the matrix DPAO(pJ --I is 
not invertible, where I is the identity matrix. So we cannot apply the implicit 
function theorem to get a smooth fixed point solution p(2) in the neighborhood 
of pi,. Indeed the fixed point solution undergoes a saddle-node bifurcation at &. 
Hence a cyclic fold bifurcation of periodic orbits corresponds to a (local) saddle- 
node bifurcation of the fixed point solution for the Poincare map, a,folding,fixed 
point path, as shown in Fig. 1 (b). 

Geometry-normal form 
A normal form, or simplest, one-dimensional representation of a differentiable 

Poincare map xk+ , = P,(x,) in the neighborhood of a cyclic fold bifurcation is as 
follows (4) : 

Xk+l = Xk +x: +n. (2) 

Figures 2(a)-(c) show MATLAB plots of this map at different values of A: 
,? = -0.5, 2 = 0.0 and /I = 0.5. 

A point p;. is a fixed point of the map P, if pI1 = PA(pJ. The fixed points of the 

map xktl = xk + xi + 2 at different values of i may be seen in Figs 2(a)-(c). These 
fixed points satisfy the equations xk+, = _yk + xz + 3, and xkt , = xk, which reduce 
to the equation pi +I. = 0. Graphically, fixed points are the intersections of the 
function xk + xf + 3. and the diagonal xk + 1 = xk. Examining Figs 2(a)-(c) or the 
fixed point equation pi’ +I = 0 reveals that the normal form may have two real 
fixed point solutions for i < 0, no real fixed point solutions for i > 0, or one real 
solution for 1” = 0. For example, at 1. = - 0.5 there are two fixed points labeled ~1;. 
and ~2;. in Fig. 2(a). One of these fixed points, pl),, is stable, and the other, p2j,, is 
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Xk+l 

FIG. 3. Jump phenomena for differentiable maps. (a) The differentiable map has three orbits, 
two stable and one unstable. (b) The differentiable map undergoes a cyclic fold bifurcation, 
and two orbits,pl andp2, coalesce. (c) Upon the cyclic fold bifurcation, if the state trajectory 

was in a steady state pl, it will jump to the remaining stable orbit, p3. 

unstable. The stability of a fixed point is determined by the slope of the Poincark 
map at the fixed point, which is also the magnitude of the eigenvalue of the 
linearized Poincark map. The slope of the normal form at pn is 1 +2pd, so pI is 
stable if 11 +2p;,l is less than one, and unstable if 11 +2pAl is greater than one. 

As I. is increased from 2 = -0.5 to 1 = 0, the two fixed points approach one 
another to coalesce into a double root plj. = ~2~. = 0 at 2 = 0. This is the cyclic 
fold bljiircation point. Figure 2(b) shows the normal form at the cyclic fold bifur- 
cation point, 1” = 0. 

For parameter values i > 0, the fixed point equation pj +A = 0 has no real 
solutions. The function does not intersect the diagonal and the map has no fixed 
points, as shown in Fig. 2(c) for /I = 0.5. 

Observe in Fig. 2(b) that the slope of the function, or eigenvalue of the linearized 
map, is + 1 at the cyclic fold bifurcation point (at pl, = ~2, = 0, slope 1 + 2pj, = 1). 
For a differentiable map, the only way two orbits can coalesce is if the map becomes 
tangent to the diagonal at a double root. It is this tangency of the function to the 
diagonal that leads to the ‘slope equals one’ cyclic fold bifurcation condition. Thus, 
differentiability of the map is fundamentally connected with the classical fold 
bifurcation. 

Also, for first order systems differentiability requires that a cyclic fold bifurcation 
join a stable and an unstable orbit. Since the slope/eigenvalue of the map 
approaches + 1 at a cyclic fold bifurcation point, it must be greater than + 1 at 
one of the coalescing fixed points, and less than + 1 at the other. This corresponds 
to an encroaching union of a stable orbit and an unstable orbit. For higher order 
systems with n- 1 of a total of n eigenvalues within the unit circle, an analogous 
argument applies. 

Jump phenomena 
Figures 3(a)-(c) illustrate typical jump phenomena of circuits with differentiable 

PoincarC maps. Figure 3(a) shows a differentiable Poincari: map with three fixed 
points, pIA, p2;,, and p3*, two stable (~l~,p3~) and one unstable (~2,). As the 
parameter 2 is increased, the fixed points ~1;~ and ~2)~ coalesce in a cyclic fold 
bifurcation, as shown in Fig. 3(b). For parameter values beyond the CFB point, 
the map has just one fixed point, ~3~. 
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FIG. 4. (a) Ferroresonant circuit. (b) Nonlinear inductor characteristic. (c) Fixed point 
curve as a function of 1. 

If the circuit happens to be operating in the stable steady state associated with 
the fixed point pl,, then varying the circuit parameter 1 through a range of values 
including the CFB value results in the circuit trajectoryjumping to a new stable 
orbit, ~3~. This jump is signaled by an eigenvalue of the linearized Poincark map 
approaching p = + 1 as the CFB nears, and, when the two-point boundary value 
problem defining the periodic orbits of a circuit has been algebraically formulated, 
by ill-conditioning of the equations in the neighborhood of the bifurcation. 

Next, we introduce an example of a power electronic circuit that exhibits cyclic 
fold bifurcations and that can exhibit jump phenomena. This circuit has a differ- 
entiable Poincark map, as discussed here. 

Circuit example (fkrroresonant) 
Nearly all practical inductors and transformers are built with windings on 

magnetic cores that exhibit magnetic saturation. As such, these devices are 
inherently nonlinear. In a number of applications, these devices are designed to 
operate in saturation, as well as in their linear regimes. Examples are in magnetic 
amplifier circuits and in regulating transformers. The example of Fig. 4(a) studied 
in (5-7) is derived from an application where a saturable reactor forms a nonlinear 
resonant circuit with a capacitor. Although this example is constructed to exhibit 
the interesting nonlinear phenomena of fold bifurcations and the associated jump 
resonance, it contains the elements present in many more practical scenarios. 

This ferroresonant circuit has state equations 

(RI +&)91 = -4,/C, +RZg(b)+e3(t) 

(RI +&)& = -&qllCl -R,&g(db)+&ei(t) 

where states q, and & are the charge across the capacitor and the flux through 
the inductor, respectively. The nonlinear inductor characteristic is 
i2 = g(&) = a& +@z, as shown in Fig. 4(b), and the sinusoidal forcing function 
is e3(t) = iE cos wt. For the state vector x = (q,, &) we refer to the above state 
equations as X =,fi.(x, t). We parameterize the circuit by multiplying the forcing 
function by a parameter ,? to get e3(t) = AE cos wt. In this example, bifurcations 
of T-periodic orbits with the variation of the parameter i are of interest. 

Because the function jj. is periodic with period T = ~~/(27c), we may define a 
Poincark map by sampling the system flow every T seconds. If the system flow is 
x(t) = $(t, x(t,), to, A.), then the PoincarC map Pj.: R2 + R’ is given by the equation 
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FIG. 5. (a) A stable and an unstable orbit coalesce in a cyclic fold bifurcation as 2 is varied. 
(b) Three periodic orbits at the same value of /I (1 = 1). The center orbit is unstable, and 

the two outer ones are stable. 

xk+, = x((k+ l)T) = $((k+ l)T,x(kT), to,/I) = Pi(xk), k~27,. For a given par- 
ameter value I., any T-periodic orbit of the circuit has a corresponding fixed point 
x of the Poincare map P,.. 

The folding solution path of orbits, corresponding to values of i. at which the 
circuit has first one, then three, and then one T-periodic solution (S-7), is rep- 
resented in Fig. 4(c) for the circuit values R, = 5Ofl, R2 = 1OQ C, = 1.69pF, 
E = 1OOV and (a,/~) = (0.03, 0.174). A finite difference formulation with the 
Trapezoidal Rule is employed in a MATLAB program with N = 40, where N is 
the number of uniform sample points of the orbit (8). The three orbits at 2 = 1 are 
illustrated in Fig. 5(b). The two outer orbits, T, and Ti, are stable, and the center 
orbit Tz is unstable. Figure 5(a) shows a MATLAB mesh plot of the cyclic fold 
h~jiircation occurring at 2 Z 1.1, at which point the small stable orbit T, coalesces 
with the unstable orbit r2. An eigenvalue of the Poincare map approaches 1 at the 
bifurcation, and the finite difference formulation becomes ill-conditioned, as shown 
in Fig. 6(b). 

Figure 6(a) illustrates the jump phenomenon related to the presence of a cyclic 

7- 

e- I 
0.6. a:- 

3- 

- 

FIG. 6. (a) Stable periodic orbit as a function of 1. The jump from the stable periodic orbit 
TO to the stable periodic orbit Tz is due to the presence of a cyclic fold bifurcation at 2 zz 1.1. 
(b) Conditioning as a function of 1, reflecting the cyclic fold bifurcation and associated 

jump phenomenon. 
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fold bifurcation, as discussed previously. If the circuit is operating in a steady state 
corresponding to the stable orbit I,, and then the parameter ,? is gradually increased 
to a value greater than L*, where ,?* z 1.1 is the parameter value at which the orbit 
undergoes a cyclic fold bifurcation, then the circuit will exhibit jump behavior and 
the trajectory will “jump” from a continuation of I, to a continuation of 13, as 
shown in Fig. 6(a). 

As discussed in (57), ferroresonant circuits exhibit a variety of bifurcations 
other than the cyclic folds discussed in this example, and other nonlinear behaviors 
including chaotic waveforms. 

This section deals with the case of power electronic circuits with differentiable 
Poincare maps that undergo cyclic fold bifurcations. For a discussion of cyclic fold 
bifurcations of circuits with continuous but non-differentiable Poincare maps, see 
the Appendix. The next section presents period-doubling bifurcations in power 
electronic circuits, including conditions under which a circuit will period-double 
once and then not again, and conditions under which a circuit will period-double 
repeatedly along a path to chaos. 

IV. Period-doubling Bifurcations 

4.1. An introduction to period-doubling 
Suppose a continuous time system has a stable periodic orbit I of period T, with 

state trajectory x(t) = x(t+ T). The periodic orbit is said to period-double if a 
monotonic variation of a circuit parameter gives rise to a stable periodic orbit of 
period 2Tjust as the periodic orbit of period T becomes unstable. Period-doubling 
is considered generic to nonlinear dynamical systems, and has been observed in 
power electronic circuits such as DCDC converters. 

In this section, we give an overview of period-doubling phenomena in closed- 
loop DCDC conversion circuits with locally differentiable Poincare maps. We 
draw from power electronics and bifurcation theory literature, and from our own 
analysis, to answer questions about when and why such circuits period-double, 
whether or not they period-double repeatedly to chaos, and the relationship 
between orbit symmetry and the likelihood of encountering a period-doubling 
bifurcation. 

Subsection 4.2 begins by examining a power conversion circuit that period- 
doubles a single time with the variation of a circuit parameter, and invokes intuitive 
circuit-based arguments along with results on homeomorphic maps to explain why 
it does not period-double repeatedly. Then a technique typically used by circuit 
designers to avoid a period-doubling bifurcation, the inclusion of a ramp in the 
current mode control, is described and explained in terms of Poincart map eig- 
envalues and the homeomorphic map slope. 

Subsection 4.3 deals with DC-DC converters that appear to period-double 
repeatedly to chaos. We present the associated normal form, a simple one-dimen- 
sional dynamical system that exhibits a period-doubling cascade, to explain the 
phenomenon, and then present detailed power electronic circuit examples. These 
examples are second order buck converters operating in different modes. We 
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emphasize the difference between circuits that period-double to chaos and those 
that period-double a single time. 

In the final subsection, 4.4, we address the question of how likely a power 
electronic circuit is to period-double, and present results relating the genericity (or 
lack thereof) of period-doubling bifurcations to orbit symmetries. 

First, we present a brief mathematical description of period-doubling for differ- 
entiable Poincare maps. 

Mathematical dejnition ofperiod-doubling. The crossing of the unit circle at - 1, 
by a Floquet multiplier predicts the occurrence of period-doubling. Suppose pO is 
a stable fixed point for Pi,. Furthermore assume that the map P,” is everywhere 
differentiable. The implicit function theorem gives a smooth fixed point solution 
,J -p(2) through (pO, &). At the period-doubling bifurcation, the solution branch 
loses its stability and a stable periodic orbit consisting of two periodic points? of 
period two is created. Let p,(J), ~~(1.) be the two period-two periodic points for 
the Poincare map Pi. Since P,(p, (i)) = ~~(2) and P,(p,(A)) = p,(n), a new periodic 
orbit of twice the period is created, and it intersects the Poincare section at p,(i) 
and p?(A). Thus, a period-doubling bifurcation corresponds to a (local) pitchfork 
bifurcation of the fixed point solution. 

4.2. A single period doubling 

In this subsection we define homeomorphic Poincare maps and present a result 
on period-doubling for such maps. In brief, the result states that such a map can 
period-double at most a single time. Then we present an example of a DCDC 
converter that undergoes a single period-doubling bifurcation with the variation 
of a parameter, the source voltage, and show that it has a homeomorphic Poincare 
map and so cannot period-double again. This circuit is a first order buck converter 
under current mode control. Then we take the same circuit and show how adding 
a compensation ramp to the control can prevent the circuit from period-doubling 
over the parameter range of interest. This is a common design technique to prevent 
instabilities. 

4.2.1. Period-doublingfor homeomorphic Poincari maps. Consider the case when 
the Poincart map is a homeomorphism of R. A functionJ‘(x) is a homeomorphism 

iff(x) is one-to-one, onto and continuous, andf’ ‘(x) is also continuous. 
An example of a homeomorphic Poincare map is of the form 

xk+, = ie p(kl+k2r~) +k3, where the kis are constants. A homeomorphic map like 
this one can period-double to at most prime period two with the variation of a 
parameter, as shown in Figs 7 and 8 for our example map. This result is stated 
more formally, and proved as follows. 

Lemma H 
A homeomorphism of 58 can have no periodic points with prime period greater 

than two. 

?A periodic point of period n for a mapfis a point x0 which satisfiesf”(x,) = x0, where 
f” =.fo . of (n times). If n is a period for x,,, then kn is also a period for x,,, k = 1, 2,. 
The smallest of all periods for x0 is called the fundamental or prime period. 
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FIG. 7. A homeomorphic map of the form xi+, = i e m(Al+‘~rJ+k3. As the parameter /I is 
varied, the slope of the fixed point passes through - I, and the orbit period-doubles a single 

time. 

Proqf’: Consider the following two scenarios : (a) The slope off(*) is everywhere 
positive, or (b) the slope of,f’(*) is everywhere negative. We do not need to consider 
any other cases since a homeomorphism can have no critical points.? (a) Since the 
slope is positive at all points, period-doubling cannot occur. (b) If the slope is 
everywhere negative, let us assume that there is a parameter for which the slope is 
equal to - 1.:: The periodic orbit of prime period two denoted by 
{x:,x;, x:, x:, XT, x2*, . . ) can be expressed as j’(xT) = x; and f(x:) = XT or 
f(J’(xT)) = x7 andf(.f’(xT)) = XT. I n order for the periodic orbit of prime period 
two to further period-double, the slope of f’(.f(*)) must cross - 1. By the chain 
rule, the slope ofJ‘(f(*)) can be written asJ”(xf)J“(sT). Since this product is always 
positive, period-doubling cannot occur beyond prime period two. n 

In the next subsection we show that the Poincare map for a first order buck 

FIG. 8. The second return of a homeomorphic map of the form xk + , = i e m(‘l+‘~rd + k,. As 
the parameter 1 is varied, the slope of the fixed point passes through + 1 and the period- 
one orbit doubles, leading to three corresponding fixed points, two stable and one unstable. 

t A critical point of a functionf: R + L% is defined to be a point .Y* where the slopef”(x*) 
is equal to 0. 

1 If this is not the case, then period-doubling cannot occur and this will fall into the 
category defined by (a). Details are given in (9). 
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FIG. 9. First order buck under current mode control without compensation ramp. The 
current waveform corresponding to a duty ratio less than one-half exhibits stable behavior. 

converter under current-mode control, without a compensation ramp, is a homeo- 
morphism, and that this explains why it can period-double once, but not again. 

4.2.2. Current mode control ofjrst order buck without compensation ramp. Current 
mode controlled DC-DC converters without compensation ramps are known 
to period-double. The usual analysis in the power electronics literature (10, 11) 
concludes that period-doubling occurs approximately when the duty cycle is one- 
half. Here, the duty cycle is the fraction of each cycle that the switch is in the 
u = 1 position. This conclusion can be based on geometric analysis of the current 
waveform shown in Fig. 9, where the current trajectory is approximated as being 
piecewise linear. As is evident from the pair of trajectories in Fig. 9, the eigenvalue of 
the corresponding Poincare map is negative. This is because the pair of trajectories 
crosses exactly once during a single period of operation. As may also be evident 
from the figure, the magnitude of the eigenvalue is less than one, i.e. the trajectories 
are converging, with duty cycle less than one-half. This situation changes when a 
single bifurcation occurs with duty cycle of approximately one-half. For duty cycles 
beyond one-half, the eigenvalue is negative and has magnitude greater than one. 
For more details on this geometric analysis, see for example (10,ll). The remainder 
of the subsection develops corresponding algebraic results for the circuit of Fig. 9. 
The important conclusion here is that the Poincare map is homeomorphic and 
only one period-doubling bifurcation is possible. 

First, we derive state equations for the circuit. The first order buck converter of 
Fig. 9 has state equation given by 

i-, = -240,x, -(l -u)w*x, +ub,, 

where x, = i is the inductor current, 

(3) 

R RfR, 
w, =-) 

L 
w2 =--------- 

L 
and b, =z 

The input u takes on the values 0 and 1, according to the instantaneous position 
of the switch as indicated in Fig. 9. 

Under normal operation in current mode control, the circuit switches from u = 0 
to u = 1 at the beginning of each period, beginning with the period starting at 
t, = 0. The control switches from u = 1 to u = 0 at time t,, satisfying the intercept 
constraint 
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FIG. 10. First order buck under current mode control with compensation ramp. 

as indicated in Fig. 9. 

PoincarP map formulation. Next, we use the state equations derived above to 
derive a Poincart map for the circuit. Without loss of generality, let to = 0 and 

denote x,(O) = x, and x,(T) = x,,,. The solution of the system under u = 0 is 

x,,, 1 = e -‘“dT-‘,*)_y, (t,,), (5) 

Substituting for t,, from Eq. (4), one obtains the Poincare map as 

For R, << R, which implies that 1 < oz/w, cc 2, the Poincare map is a homeo- 
morphism with negative slope. Applying Lemma H to the circuit, we conclude that 
the system can period-double to prime period two. 

In fact, this Poincare map does lead to a single period-doubling bifurcation when 
the parameter b, (corresponding to the source voltage) is varied from a large 
positive value toward zero. Note that we have included the resistance R,, so that 
the Poincare map will yield a unique period-doubled trajectory. With R, = 0, the 
Poincare map turns out to be linear. 

4.2.3. Current mode control qf’rst order buck converter wYth compensation ramp. 
Since the period-doubling bifurcation discussed above is usually considered a 
hazard in a circuit design, circuit designers often include a stabilizing compensation 
ramp to avoid this bifurcation. The circuit of Fig. 9 is modified in a number of 
ways to yield the circuit of Fig. 10. First, we take R0 = 0. Second, the control is 
implemented in a slightly different manner. Namely, the switch is held in the u = 0 
position at the beginning of each cycle, until a ramp intercept event triggers the 
transition to the u = 1 position. We use this convention to be consistent with the 
analysis of this circuit in (12). Note the importance of the introduction of a 
stabilizing rump. 

With the relationship between the ramp and the current waveform as shown in 
Fig. 10, the eigenvalue corresponding to the Poincare map for this circuit is actually 
positive. This is a result of the geometry of this diagram where the current trajectory 
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actually crosses the compensation ramp at the intercept point. As such, any pair 
of trajectories cannot cross, as illustrated in Fig. 10. It is evident from elementary 
geometric considerations that the corresponding eigenvalue is positive, and hence 
bounded away from - 1. As such, period-doubling is avoided. 

Note that this conclusion requires that the current trajectory actually crosses the 
compensation ramp. As discussed in (K?), this requires that the compensation ramp 
be designed with adequate slope to avoid multiple pulsing. Multiple pulsing would 
occur in the implementation of (12) if the current waveform were able to cross the 
compensation ramp more than once per period. To avoid this, the compensation 
ramp is designed with slope greater than the slope of the current waveform under 
u = 1 for all feasible parameter values. Note that many other current mode control 
implementations avoid multiple pulsing with the use of a latch. 

Poincark map jbrmulation. The first order buck converter of Fig. 10 analyzed in 
(12), has state equation 

i-, = -o,x,+ub, (7) 

where X, = i is the inductor current, w, = R/L, b, = E/L where E denotes the 
input voltage, and u takes on values 0 and 1 corresponding to the switch position. 
Under normal operation, the switch transition from u = 1 to II = 0 occurs period- 
ically with period T beginning at t = 0. The system switches from u = 0 to u = 1 
at time t,, satisfying the constraint 

x1(L) = L&44, (8) 

where i ramp(t) = imin + (i,,, - i,,,,,)F (t/T,), and F(x) returns the fractional part of X. 
Without loss of generality, let to = 0 and denote x,(O) = x, and x,(T) = x,+ ,. 

The state trajectory under u = 0 yields 

xi (t,,) = e~“‘l’~*x,,, (9) 

and under u = 1 yields 

(10) 

Combining, the Poincare map is given by 

with the constraint 

Even without an explicit expression for t,,, useful information about stability 
can be obtained by computing the eigenvalue (of the Jacobian) of the Poincare 
map given by 
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dx,, , ~ = ,-qr 
dx,, 

,_b, e+ W,l, _!P$ 
’ ,I 1 

(13) 

where 

(14) 

It is clear that, for passive circuit elements, w, is positive and so the quantity 
e -“l’ always has magnitude less than 1. Therefore, any instabilities are due to non- 
zero dt,,/dx,. However for this circuit, even though dt,,ldx,, is non-zero, 
dx,,+, /d-x,, always has magnitude less than 1 provided the ramp is designed to avoid 
multiple pulsing. Multiple pulsing could occur if the slope of the current waveform 
exceeded the slope of the ramp with u = 1. Since the maximum value of ,i-, (for 
the u = 1 system) occurs at r = t,,, a proper design would ensure that 

- w , x, (t,,) + b, < (i,,x - i,,,,)/ T. Therefore b, e +r’Jl’,m (dt,,/dx,,) < 1. Therefore 

dx,+ , /dx, is always positive and hence the exclusion of period-doubling. 

4.3 Period-doubling cascade to chaos 
Now that the case of power electronic circuits with homeomorphic Poincark 

maps has been covered, we move on to DC-DC converters that period-double 
repeatedly to chaos. The subsection begins with a presentation of a period-doubling 
cascade normal form, and ends with circuit examples. 

4.3.1. Normal,form. The normal form for period-doubling bifurcations leading 
to chaos is the logistic map F, given below : 

F,.(.x):=/?x(l -x), 0 < x d 1, 1 < J. < 4. (15) 

This nornzalform is only applicable to the case of everywhere differentiable Poincari: 

maps. 
For 1 < 3, < 4, F, maps [0, 1] to [0, I]. Solving the fixed point equation F,(x) = x 

gives the fixed points 0 and x*(/1) = (I.- l//i). for x*(/2) E [0, I], we need 2 > 1. We 
find also that d/dx F,(O) = 3. and d/dx F;(x*(A)) = 2-1. So 0 is always unstable 
(since J. 3 1) and x*(i) is stable only for 1 < 1. < 3. 

At & = 3, d/dx F,(x*(&,)) = - 1, so x*(A) undergoes a pitchfork (period-doub- 

ling) bifurcation and becomes unstable for J. > 3. Moreover, a stable two-cycle? is 
born. The two period-two periodic points x,, xZ satisfy the equations 

x2 = F,.(x,) = Lx,(l -x,) (16) 

x, = F;.(xz) = 2x2( 1 -x*) (17) 

resulting in 

x 
l+/?+J/I’-22-3 

1.2 = 21 
(18) 

tAn m-cycle for a map ,f‘ is a set of m points {x1,. ,x,} such that .f’(x,) = xi+ ,, 
1 < i < m- 1, andJ’(x,,,) = x, Hence each x, is a periodic point of period m for,f. 
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Xk xk xk- 

a) b) Cl 

Fm. 11. Logistic map period-doubling for the first time. This is the second return map, X~ + z 
as a function of xk. The second return map F* goes from having one fixed point, cor- 
responding to a stable, period-one orbit, to three fixed points, corresponding to a stable 

period-two orbit and an unstable period-one orbit, as the parameter i is increased. 

Figure 11 illustrates this first period-doubling bifurcation of the logistic map, 
occurring at ;I = 3. This figure shows the second return map, which goes from 
having a single stable fixed point corresponding to a period-one orbit to three fixed 
points corresponding to the newly unstable period-one orbit and the stable period- 
two orbit. 

Since x,, x2 form a two-cycle for the map Fj., each is a fixed point for the iterated 
map F: Also the term A2 - 21. - 3 in Eq. (18) is negative for 1, < 3, which explains 
why period-two fixed points do not exist for i < 3. Recall that FA has a fixed 
solution given by x*(1.) = (A- 1)/i. Initially the attracting set consists of the single 
point x*(1.) that bifurcates into two points x,,~()_) at 2, = 3.0. 

Denote the jth composition of F b 

J’ 

F’. Note, that d/d-x Fz(x, (I.)) = 
d/dx F: (x2 (A)) = - 1 when i, = A2 = 1+ 6 = 3.44949 So the map Fj under- 

goes a period-doubling bifurcation at I.,. Since both x,(i), x2(A) are fixed points 

for Fj, they lose their stability and bifurcate into four points at I.,. These four 
points are stable fixed points for the iterated map F;, and thus are stable periodic 
points of period four for F,. For example, at II = 3.5, the steady state solution (or 
attracting set) cycles among the four values of 0.82694, 0.50088, 0.87500 and 
0.38282. On increasing 2 further, the number of alternating steady state values 
increases with 2”, the interval between successive bifurcation values decreases, and 
the distance between neighboring periodic points decreases until eventually what 
looks like a chaotic attracting set appears. This is called a period-doubling cascade 
to chaos. 

Next, we present power electronic circuit examples that appear to undergo 
period-doubling cascades to chaos. 

4.3.2. Second order buck in continuous conduction mode under PWA4 control. 
Unlike the first order buck converter examples, the second order buck converter 
of Fig. 12 can exhibit more than one period-doubling bifurcation. As outlined 
below, this circuit has been shown to exhibit the period-doubling route to chaos. 

As detailed in (12), the state equations describing the operation of the second 
order buck converter of Fig. 12 are 
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TABLE I 

First e&ht bifurcation values ,for the logistic 

map Fj. 

i, = 3.0 1, = 3.568759.. 
i, = 3.449490. 1, = 3.569692.. 
i, = 3.544090.. 1, = 3.569891.. 
2, = 3.564407.. 1, = 3.569934.. 

_ 

where 

(19) 

(20) 

1 , E 
x, = 1 .A, x2 =uJc, Lo” and w, =p, 

RC 
0, =p, 

JL 

and the variables i and v denote the current through L and the voltage across C, 
respectively. 

The control is analogous to that of the current mode controlled buck converter 
with a compensation ramp, except that an error voltage developed by comparing 
the capacitor voltage with a reference is the variable used to control the circuit. 
This is illustrated in Fig. 12. 

PoincarP mapformulation. Unlike first order DCDC converters, it is not possible 
to “invert” the u = 0 system to solve for switching time t,, when the system transits 
from the u = 0 system to the u = 1 system. Instead, extensive numerical simulations 
were performed in (12) to investigate period-doubling. 

Numerical results from (12). The second order buck converter circuit exhibits 
period-doubling behavior as the amplitude of the input voltage (E) is varied from 
15.0 V to 40.0 V. For E < 25.0 V the circuit has a stable periodic orbit with period 
T, which then bifurcates to two (identical in phase space, but shifted in time) stable 
periodic orbits of period 2T at E z 28.0 V. At E z 32.0 V the two 2T periodic 
orbits bifurcate to four stable 4T periodic orbits and so on. This phenomenon 
repeats until a stable periodic orbit of period 2KT fills in a dense region on the 

0 1 

FIG. 12. Second order buck in continuous conduction mode under PWM control. 
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FIG. 13. Second order buck in discontinuous conduction mode. 

Poincare section. For large K, this stable periodic orbit resembles a chaotic attrac- 
tor. These numerical observations are also experimentally confirmed in (12). As 
such, the PWM feedback controlled buck converter appears to exhibit the period- 
doubling cascade to chaos. 

4.3.3. Secondorder buck in discontinuous conduction mode. Another related circuit 
example exhibiting the period-doubling route to chaos is that of a feedback con- 
trolled buck converter operating in discontinuous conduction mode. A circuit 
model with a typical current waveform is shown in Fig. 13. The circuit is dis- 
tinguished from the other buck converter examples by the presence of a diode 
which prohibits the inductor current from reversing. As such, this circuit can 
exhibit a mode of operation involving three phases: (i) the switch is in the u = 1 
position, (ii) the switch is in the u = 0 position, with the inductor current i > 0, 

and (iii) the switch remains in the u = 0 position, with the inductor current i = 0. 
This mode of operation is known as discontinuous conduction mode since the 
inductor current has a period during each cycle where it is identically zero. 

One advantage for analysis of this circuit in discontinuous conduction mode is 
that one only needs to deal with a first order Poincare map. This route of analysis 
was taken in (13). A nearly identical analysis for a similar boost converter was 
carried out in (14). 

The state equations in (13) describing the operation of the second order buck 
converter of Fig. 13 are specified with three phases of operation. 

We define 

the variables i and v denoting the current through L and the voltage across C 
respectively and b, = El&, h w ere E is the input voltage. With u = 1 the system 
is described by 

i, = -w,x,+b, (21) 

x2 = +w,x, -0,x1. (22) 

For u = 0 with x, > 0, the system is modeled by 

2, = -w()xz (23) 
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x* = +w,x, -0,x*. (24) 

When the inductor current reaches zero, the system is described by 

1, =o (25) 

x2 = -w,x2. (26) 

Poincarb mup,formulution. Take the sampling times as t,, = nT which coincide 
with the times at which the circuit is switched from the u = 0 to the u = 1 con- 
figuration. Denote the transition times from u = 1 to u = 0 as t,,_,. Let Qj denote 
the state transition matrices for the three phases of operation and denote 
x(&J = [~,(t,,),x~(t,,)]~. Note that X, does not need to be considered as a state 
variable since the inductor current is identically zero at sampling instants, 
x,(nT) = 0. When all transition matrices have been computed, we obtain an iter- 
ative map of the form 

X(6,+ I) = .f (x(tA d,!) (27) 

where d, is the duty cycle during the nth period, defined as 

d, = ““-;-t,, . 

An open loop system results if d, is fixed and a closed loop system results if d, is 
dependent on x(t,,). The infinite series representation of the state transition matrices 
Oi are approximated in (13) with power series including only up to second order 
terms, i.e. 

Neglecting x, since x, = 0 at all t = nT and letting y:n = u,, a one-dimensional 
approximate Poincare map is constructed in this fashion and is given by 

where 

I.,,+ I ’ = MY,, + 
N&W-y,,) 

, 
411 

T’ 
M= l-T+- 

RC 2R2Cz 

P-9 

T2 

N= 2LC’ 

The closed loop system studied in (13) is controlled with the feedback law : 

d,,(_vn) = 0, 4el.r4?;,, -z’,,,) < 0 

d&4 = 1, & - k(y,, - z’rcd ’ 1 

d,,(y,,) = dr,r-k(y,-qef), otherwise. 

The resulting approximate Poincare map falls into the class of unimodul maps (that 
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have one local maximum or minimum), which is well known to exhibit the period- 
doubling route to chaos. Verification of chaos and period-doubling by computer 

simulations and by experiment are presented in (13). 

4.4. Period-doubling genericity depends upon orbital asymmetry 
In this subsection, we address the question of how likely a power electronic 

circuit is to period-double by presenting results relating the genericity of period- 
doubling bifurcations to orbital symmetries. To summarize, though in general 
period-doubling bifurcations are considered to be generic, they are not generic to 
orbits with half-cycle symmetry. This sheds light on why it is that power electronic 
circuits that have been observed to undergo period-doubling bifurcations, such as 
the examples in this section, do not in general have half-cycle symmetric orbits, 
though many power electronic circuits do. 

4.4.1. Period-doubling for half-cycle symmetric orbits. Various symmetries in 
power electronic circuits are detailed in (15). These symmetry properties can 
be used for easing computational effort and for compact model descriptions. 
Symmetries in power electronic circuits imply that a complete cycle of circuit 
operation may be composed of a basic pattern that is repeated a certain number 
of times, with some special transformation of the pattern at each repetition within 
the cycle. In this subsection, we only focus on deriving Poincare maps for circuit 
operations with half-cycle symmetry. Results from (16) are used to formulate 
conditions for period-doubling in power electronic circuits with half-cycle 
symmetry. The following discussion is extracted from (15). Consider the case when 
the half-cycle Poincare map corresponding to the first half-cycle of every cycle can 
be written as 

-4tx+ I) = f(X(t*k)). (29) 

A number of power electronic circuits with two patterns per cycle (half-wave 
symmetry) have the property that the evolution in the second half-cycle is governed 
by the same function,f(x(*)), acting on a transformed state vector so that the full- 
cycle Poincart map can be written as 

WX(&+ 2 ) =fPwb,+,)> (30) 

where W* = Z, the identity matrix, so that W = W-‘. The following results are for 
the symmetry W = -I. 

Definition 

The trajectory of the continuous time trajectory x*(t) corresponding to a half- 
cycle symmetric periodic orbit satisfies x*(t) = -x* (t + T/2), where T is the period 
of the periodic orbit. The following results are extracted from (16) with minor 
modifications. 

Lemma S1 
Symmetry breaking of x*(t) is equivalent to period-doubling of the half-cycle 

Poincare map but not of the full-cycle Poincare map. 
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Lemma S2 

Period-doubling of the full-cycle Poincare map is equivalent to period-quad- 
rupling of the half-cycle Poincare map. This is equivalent to a pair of eigenvalues 
of the half-cycle Poincare map on the unit circle at If: i. 

Lemma S3 

Period-quadrupling of the half-cycle map occurs when at least two eigenvalues 
of the full-cycle Poincare map are coincident at - 1. 

Proof of Sl, S2, S3: Denote the map from .~(t,) to x(r,) as Pi;. It follows that 
the full-cycle Poincare map can be written as Pii+ T and without loss of generality, 
let t,, = 0. Denote the full-cycle and the half-cycle Poincare maps as P and PH 
respectively, where P, = PF2. The symmetries of x*(t) are given by 

x+-Ix (31) 

(32) 

The derivation of the half-cycle Poincare map P, follows directly from the com- 
mutativity relationship : 

(-I)*P F/2 = P,“‘*(-I) (33) 

where * denotes composition. This leads to Pr = (-I*PoT,“)’ or P = (PH)‘. 

Lemmas Sl, S2, S3 follow directly from the definitions of the eigenvalues of the 
Jacobian DPH of the half-cycle Poincare map, denoted by ,u( and the eigenvalues 
of the Jacobian DP of the full-cycle Poincare map, denoted by A,. Lemma Sl 
implies that only one p, is on the unit circle at - 1. Lemma S2 follows from 
/zj = (P,)~. Lemma S3 follows from Lemma S2 and implies that period-doubling for 
symmetric periodic orbits is an exceptional (non-generic) occurrence for single 
parameter variations. n 

Some circuit examples with half-cycle symmetry. The series resonant converter 
analyzed in (15) is an example of a double-ended DCDC converter, and is known 
to exhibit hu&ycle s?;mmetry. The state space is described by k = A;x + hi where 
i = 1, 2 and x(t) = [v,-, i,]‘. The circuit has the property that A, = A2 and 
b, (t, x) = - b, (t + T/2, -x). In the second half-cycle of each cycle, the transformed 
vector -x(t) satisfies the same set of equations satisfied by x(t) in the first half- 
cycle. So the circuit satisfies the symmetry analyzed above with the matrix Wequal 
to -I, where Z is the two by two identity matrix. For details, refer to (15). Also, 
the thyristor controlled reactor analyzed in (17) and detailed in Section V, has 
periodic orbits that exhibit the W = -Z or huljkycle symmetry. 

V. Bifurcations of Discontinuous Poincavt Maps 

5.1. Introduction 
Poincare maps of power electronic circuits may be discontinuous. In this section 

we discuss the simplest type of steady state bifurcation one can find in circuits with 
discontinuous Poincare maps, which can lead to a jump phenomenon unlike that 
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xk+l +k+l Xk+l 

I “kt’ = xk 

Ap 
,.y’ 

+ 

plx ,:.’ Xk 

:. 
,:’ 

4 

FIG. 14. Discontinuous PoincarC map. (a) At I = ?L?, there are two real fixed points, pli 
and p2).. (b) At 1 = I* we approach the edge of the discontinuity. (c) At 1 = I”:, the map 

has only one real fixed point, ~1,. 

explained in the previous sections. Also, other types of bifurcations one might 
expect to find in such systems are suggested, as discussed in (18). We end the 
section with a thyristor circuit example (17), and conjecture that it is the presence 
of state controlled switches combined with certain kinds of fairly typical switching 
control functions that produce discontinuous Poincart maps and their associated 
bifurcations. 

5.1.1. Geometry-simple models. Figure 14 illustrates a simple, one-dimensional, 
discontinuous Poincare map undergoing what we will call a discontinuity bifurcation 
as a parameter is varied. For some range of parameter values, this map has two 
fixed points, pl, and p2,, as shown in Fig. 14(a). The two fixed points are on 
disconnected segments of the map. As a parameter is varied, the intersection of 
one of the segments and the diagonal approaches the discontinuity, as shown in 
Fig. 14(b). If the parameter is varied beyond the discontinuity value, only a single 
map segment will intersect the diagonal, and the map will no longer have two fixed 
points, but only one,pl,, as shown in Fig. 14(c). 

An example of such a map is 

Xktl = Pi(X/J = 
0.5xk+ 1 +I. ifq > 0 
0.5xk- 1 +I. ifx, < 0. 

This map has a single discontinuity, occuring at xk = 0. For 111 < 1, the map has 
two stable fixed points, and for 12) > 1, the map has a single stable fixed point. 
Discontinuity bifurcation parameter values are 2 = + 1 and 1 = - 1. 

Parameterized solution sets of discontinuous maps are fundamentally different 
from those of differentiable or continuous maps. One basic difference is that varying 
a parameter can cause a real fixed point to either appear or disappear, and this 
change in the number of fixed points of a map is not necessarily accompanied by 
the merging of multiple fixed points, a continuum of fixed points, or by an escape 
to infinity, as it would for a continuous map. For example, discontinuous maps 
can, with the variation of a parameter, go from having an even number of fixed 
points to an odd number of fixed points, without an occurrence like a change in 
degree or an escape to infinity. This is impossible for continuous maps. Another 
basic difference between discontinuous and analytic maps, which are infinitely 
differentiable, is the connection between real and complex solution space. For an 
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xktl xk+l 

FIG. 15. Possible stability combinations of discontinuous Poincark maps. (a) Both pl, and 
~2; are stable. (b) The fixed point pli is stable, and p2, is unstable. (c) Both fixed points are 

unstable. 

analytic map, the number of real fixed points (assume map degree constant) can 
only change by factors of two, and the “disappearing” real solutions of analytic 
maps can be thought of as appearing in complex space once they coalesce at a 
bifurcation. For example, .q+ , = .xf + A has two real fixed points for IL < 0 and no 
real fixed points for iL > 0, but it does have two complex solutions for IL > 0 
connected to the real root paths in parameter space by the bifurcation point. 

Naturally, eigenvalues do not signal an approaching discontinuity bifurcation. 
This is because if the map is not continuous, the eigenvalues of its linearization, 
where defined, won’t be continuous either. Unlike bifurcations of continuous and 
differentiable maps, all stability combinations of fixed points on either side of a 
discontinuity are possible, as illustrated in Fig. 15. Fixed point combinations can 
be stable-stable, stable-unstable, or unstable-unstable. 

Next, we briefly describe jump phenomena of discontinuous maps, which can 
occur in power electronic circuits like the one described in the next subsection. 

5.1.2. Jump phenomena. If both fixed points shown in Fig. 14 are stable, and the 
associated circuit happens to be in the steady state corresponding to the fixed point 
~2)~ prior to the bifurcation, the discontinuity bifurcation will lead tojump behavior 
in the circuit, from the fixed point ~2, to the fixed point pl ;, with the variation of a 
parameter. 

5.1.3. Other hijbrcations due to discontinuities. The authors of (18) explore a 
special class of discontinuous one-dimensional Poincare maps and their dynamics. 
The class of maps studied in (18) is like the simple discontinuous maps in this 
section, in that it is composed of piecewise continuous maps with a countable 
number of discontinuities, but unlike in that the map slopes on the continuous 
sections are monotonic and have magnitude greater than one, so no stable periodic 
orbits can exist. These maps are characterized by semi-periodic intervals, stochastic 
attractors, and ergodic invariant measures. 

An open topic of study is whether power electronic circuits with discontinuous 
Poincare maps, such as the thyristor controlled reactor of the next subsection or 
other switched circuits satisfying the conditions of Subsection 5.3, can have more 
complicated dynamics like those described in (18) and the references therein. 

Next, we analyze a simple power electronic circuit with a discontinuous Poincare 
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(4 (b) 

FIG. 16. (a) Thyristor circuit. Single phase static VAR. (b) Classical operation. 

map and show that the map discontinuities lead to jump phenomenon with the 
variation of a parameter. 

5.2 Circuit example (thyristor controlled reactor) 
Unlike the switched converter circuits analyzed in Section IV, the thyristor 

controlled reactor (TCR), explored in (17), undergoes bifurcations in an open loop 
configuration. In this section we review some of the derivations and bifurcation 
observations discussed in (17), and interpret them in terms of map discontinuities 
and their associated bifurcations. We also contribute additional simulation and 

bifurcation results, and generalize to other switched circuits in Subsection 5.3. 
5.2.1. Circuit operation. The thyristor controlled reactor (TCR) circuit explored 

in (17) is shown in Fig. 16(a). It consists of an R-L-C circuit driven by a sinusoidal 
source, with a switching element consisting of two oppositely poled thyristors. 
Each thyristor is modeled as an ideal switch that turns on upon receiving a firing 
pulse provided its anodecathode voltage is positive, and turns off when the current 
passing through the device goes to zero. The firing pulses are applied periodically, 
with a period equal to that of the sinusoidal source driving the circuit, and a phase 
of 4 with respect to either the voltage across the capacitor, v,.(t) (assuming the 
waveform is close to sinusoidal), or to the sinusoidal source e(t). The bifurcation 
studies of (17) are done with the phase 4 as an open loop control parameter, where 
4 is measured with respect to the source voltage e(t). 

Figure 16(b) illustrates the typical operation of a thyristor controlled reactor 
circuit. As explained in (17), the gray line denotes the (assumed) sinusoidal voltage 
across the capacitor, VJt), and the black line represents the current Z,. After a 4 
radian delay from the capacitor voltage, the positively poled thyristor is fired. It 
remains on and conducts positive current until the thyristor current goes to zero. 
Then it remains off until the thyristor is fired again 271 radians (the normalized 
period of the source input) later, at 4 + 2~. 

The negatively poled thyristor is fired with a $+rc delay from the capacitor 
voltage. If the circuit is operating properly, the thyristor current will be zero upon 
firing the pulse, and the thyristor will conduct negative current and remain on until 
the thyristor current goes to zero. This thyristor then remains off until it is fired 
again 271 radians later, at 4 + 371. 

This type of circuit has two types of operation: continuous conduction and 
discontinuous conduction. If the delay 4 coincides with the peak capacitor voltage 
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(at 4 = rc/2), then the current conduction through the thyristors is continuous. For 
delays 4 that do not coincide with the peak capacitor voltage, the current con- 
duction is discontinuous, meaning that the thyristor current remains zero over an 
open interval of time, as in Fig. 16(b). The conduction times 0 can range from 0 
to rc, and depend on the firing delay 4. 

5.2.2. State equations. The authors of (17) formulate the TCR state equations 
as follows. The system state vector x(t) consists of the thyristor current Z,, the 
capacitor voltage V,., and the source current Z, : 

The system input e(t) is assumed to be periodic with period T. During the con- 
duction time of either thyristor, the system dynamics are described by the linear 
differential equations 

.k = Ax+Be (34) 

where 

A= 

and 

i 

- R, L, ’ L;- I 0 
-c-l 0 c-’ 

0 -L;’ - Rs L, 

lo\ 

B= 0 . 

i i L, ’ 

During the off time of each thyristor, the state is constrained to the plane Z, = 0 
of zero thyristor current. In the off time, the system state vector y(t) consists of the 
capacitor voltage and the source current: 

Vc(t) 
y(t) = Is(t) ( 1 

and the system dynamics are given by the linear system 

j: = PAP’yf PBe 

where P is the projection matrix 

(35) 

p= 0 1 0 ( ) 0 0 1’ 

The two-dimensional state vector y(t) is the projection y = Px of the full con- 
duction state vector x(t) onto the zero thyristor current plane. 
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FIG. 17. Two periodic orbits at the same value of d(4 = 2.3661), orbit 1 and orbit 2. These 
plots show I,, the current through the thyristor, and e(r), the source voltage, as a function 

of time. 

The dynamics of the circuit are thus described by alternating systems of linear 
differential equations, from the on system described by Eq. (34), to the off system 
described by (35), restricted to the Z, = 0 plane, and then back again. Switching 
from the on to the off system occurs at switch times t, satisfying the condition 
I,(t,,) = 0. Switching from the off to the on system occurs upon receiving a firing 
pulse from the periodic pulse train. As will be shown, the characteristics of the 
nonlinear equation Zr(t,) = 0 determine the bifurcation properties of this circuit. 

For further details on circuit operation and equation derivation, see (17). 
5.2.3. Multiple orbits/jump phenomenon. Here, we summarize simulation results 

from (17) and from our own MATLAB programs. We study periodic steady 
states of the circuit shown in Fig. 16(a) with component values L, = O.l95mH, 
R,y = 0.9mR, L, = 1.66mH, R, = 31.3mQ and C = 1.5mF as specified in (17), and 

an input source of e(t) = sin wt, with w = 27160 rad/s. 
Our MATLAB programs employ a shooting method (8) over the period 

T = w/(2~) to identify periodic steady states of the circuit for a given delay 4 of 
the thyristor firing pulses with respect to the input source. We varied $ from 0 to 
7~ radians, and calculated periodic orbits for each chosen value of 4. See (17) for a 
derivation of the Jacobian that we used in our program. 

We found, in agreement with results in (17), a single stable periodic orbit for 
values of 4 ranging from 4 = 0 to 4 % 71/2, and from 4 z 2.374 to 4 w n, and two 
stable periodic orbits for 4 ranging from 4 =: 7c/2 to 4 z 2.374. Figure 17 shows 
thyristor current plotted against time for the two stable periodic orbits at 
4 = 2.3661, which we will call orbits 1 and 2. Notice that orbit 1 is large in current 
magnitude, but with a relatively small conduction time g, while orbit 2 has a small 
peak value but a larger conduction time cr. For a fixed value of 4, half symmetric 
waveforms like these may be identified by their conduction times a. This is because 
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FIG. 18. Current conduction time o as a function of the delay 4. 

if the homogenous component? of the Poincare map equation is nonsingular, as it 
is for this circuit, two distinct orbits at the same value of C#I must have different 
conduction times. 

Figure 18 illustrates a plot of the current conduction time for each calculated 
steady state as a function of the delay 4. The figure makes clear the number of 
orbits calculated for each value of $, the relationship of these orbits to one another, 
and the relationship of these orbits to those at neighboring values of 4. Observe 
that there appear to be two continuous solution sets, one above the other, and that 
orbit 1 in Fig. 17, with its small conduction time, is in the solution set with small 
conduction times ((T < 7-r/4). This orbit is one of a continuum of stable orbits that 
exists as I#I is swept over the entire range, from 0 to 7~. This means that if the circuit 
is in a steady state anywhere along this path of periodic solutions, operating for 
example in orbit 1, then an infinitesimal perturbation in the delay time C#I will lead 
to an infinitesimal deformation of the periodic orbit. Along this solution path of 
orbits with relatively small conduction times, the steady state is a continuous 
function of the delay time 4 over the allowable range of 4. 

Orbit 2, with its relatively large conduction time CI > 7c/3, is on the abbreviated 
looking solution path visible from 4 z 7c/2 to 4 z 2.374. Unlike the path of 
solutions with smaller conduction times, this path of solutions does not extend 
continuously from C$ = 0 to 4 = rc, but seems to have a starting point near 4 = 7c/2 

IThe Poincare map derived in (17) may be written y,, , = A(t,,, fsZ)yn+ 
g(tv,, t,tz,y,, e), where the “homogenous” component of the map, denoted by A( .), consists 
of products of matrix exponentials and functions of switch times t+ 
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FIG. 19. Steady state current Z, vs. time, for varying delays. The stable periodic steady state 
jumps from an orbit with a large conduction time CT to one with a small conduction time (r 

past 4 = 2.3661. 

and an endpoint near C#J = 2.374. If the circuit is operated in a steady state along 
this path at a value of 4 that is not near one of the endpoints of the path, then a 
small perturbation in 4 will result in a small deformation in the periodic steady 
state, as is the case anywhere along the continuous, smaller conduction solution 
path including orbit 1. However, if the circuit is operated in the large conduction 
orbit at 4 = 2.374, and C$ is perturbed, say to 4 = 2.3743, then the trajectory will 
jump to a new steady state that is not just a mild deformation of the steady state 
at 4 = 2.374. Rather, it will jump to a new steady state that is markedly different 
from the pre-perturbation orbit, one with a small conduction time on the other 

solution path, as shown in Fig. 18. This jump phenomenon is also shown in the 
MATLAB plots of stable periodic orbits at different values of 4, in Fig. 19, and in 
the state space projections of these orbits in Fig. 20. 

The leftmost endpoint of this solution set, near 4 z 7c/2, marks the value of 4 
at which the circuit operates in continuous conduction mode. This path does not 
continue to the left because an attempt at continuing the path for 4 < 7c/2 results 
in a misfire, and only normal circuit operation is considered. For more on misfires, 
see (17). 

5.2.4. Interpretation : return map discontinuity. Steady state jump phenomena 
with the variation of a parameter is common for nonlinear circuits. Typically, jump 
phenomenon is associated with a cyclic fold bifurcation, as described in Subsection 
3.1 for differentiable Poincare maps, and in Appendix A for continuous Poincare 
maps. 

Tracing out the eigenvalues of the Poincare map in the neighborhood of the 
bifurcation reveals that no eigenvalue approaches + 1, as it would in the case of a 
generic cyclic fold bifurcation of a differentiable Poincare map. The eigenvalues 
near the jump are at 0.8232f0.075i. Because no eigenvalue approaches the unit 
circle at the jump, the authors of (17) conclude that the jump is not due to a typical, 
differentiable, cyclic fold bifurcation. 

That still leaves open the possibility of the jump being caused by a cyclic fold 
bifurcation of a continuous, but not everywhere differentiable map, as discussed 
in the Appendix. Such a bifurcation would not be signaled by an eigenvalue 
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FIG. 20. Current I, vs. capacitor voltage, for 4 = 2.3661, before the jump, and for 
4 = 2.3763, after the jump. This figure shows two superimposed stable orbits of the TCR 
at different values of delay $J corresponding to the orbits in the first and third panels of Fig. 

19. 

approaching + 1, so the observation that the system eigenvalues do not approach 
the unit circle does not preclude a cyclic fold bifurcation of a continuous, non- 
differentiable map. However, the thyristor circuit in question cannot have any 
unstable T-periodic steady states, as was shown in (17). Since, as discussed in the 
Appendix, a generic cyclic fold bifurcation of a continuous, but not everywhere 
differentiable map involves the coalescing of an unstable and a stable or unstable 
orbit, a generic CFB of a non-differentiable map must also be ruled out for this 
circuit. 

Now that typical cyclic fold bifurcations of differentiable and continuous maps 
have been ruled out for the thyristor circuit, we look to the possibility that the 
jump behavior is caused by a discontinuity in the map. A numerical investigation 
of the Poincark map, as illustrated in Fig. 21, reveals this to be the case. The jump 
behavior appears to be caused by a discontinuity bifurcation, much like the simple 
geometric model presented in the beginning of the section. We show that the 
PoincarC map is discontinuous, and link the discontinuity to what the authors of 
(17) call a switch time bzjiircation. We show that these switch time bifurcations 
determine the PoincarC map discontinuity pattern, and that waveforms in con- 
tinuous regions of the map, for a given value of 4 fall into equivalence classes. 

5.2.5. A discontinuous return map. The system PoincarC map is obtained by 
sampling the state x(t) every T seconds, where T is the period of the input sinusoid 
e(t). To reduce the map to two dimensions, the trajectory is sampled at 
tk = to,+ kT = c#1T/(2z) + kT, k = 0, 1,2,. , at the arrival of the thyristor firing 
pulses. At times tk the thyristor current x, (ton) = I,(&,,) = 0 under normal operating 
conditions. Since x, = 0 at all sample values, the Poincari: map may be defined as 
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FIG. 21. Double discontinuity in map. (a) n,(T+ to) as a function of x*(tO). (b) x3(T+ to) 
as a function of xZ(fO). In both cases, x,(tO) is fixed at - 1.5489, and C$ is fixed at 2.3661. 

The discontinuities occur at x,(U) z 1.5083 and x,(tO) =z 1.5211. 

a two-dimensional mapping P, : y. + JY, where y. = .dto,> = Mt,,L Don)) and 
YT = _d&nl+ r> = (X*(fon+ n X3(LJnf n1. 

An analytic expression for the Poincare map P, is defined in (17). Because the 
Poincare map P, maps R2 + R2, it is somewhat difficult to visualize. As an aid, we 
first think of the map as an interconnected pair of maps from R2 -+ R, one from 
the (xZ(ton),x3(ton)) plane to x,(t,,+ T) and the other from the (xz(tOn), xj(tOn)) 
plane to xj(t,,+ T). Then, to further simplify, we trace a curve through the 
(xz(t,J, x3(&)) plane and look at xZ(fon+ T) and x3(ton+ T), respectively, as a 
function of the values of (xz(t,,), x3(&J) along the curve. We call such a procedure, 
which is equivalent to intersecting the Poincare map with a vertical surface, slicing 
the map. 

Figure 21 (a),(b) shows a slice of the Poincare map, at a fixed delay of 4 = 2.3661. 
These are MATLAB plots, obtained by simulating the circuit over a period T 
(numerically integrating the state equations (34), (35) over T seconds), from t,, to 
to,+ T, starting from chosen initial conditions x2(&,,) and x3(t,,) along the line 
defining the map slice. The line through the (x1(&,,), xj(tOn)) plane defining the slice 
shown in Fig. 21 (a),(b) is parallel to the x2(ton) axis, with x3(t,,) held constant at 
- 1.5489. 

Figure 21(a),(b) shows x,(t,,+ T) and x3(&+ T) as a function of xZ(ton), with 
x3(ton) held at - 1.5489. Notice that there are two discontinuities on the slice 
of map shown, one at (xZ(ton),x3(tOn)) z (1.5083, - 1.5489), and the other at 
(x2(&), x3(&,,)) z (1.5211, - 1.5489). Other numerically obtained slices reveal 
similar discontinuities, and, for a fixed 4, the map discontinuities projected onto 
the (xz(t,,), xj(t,,)) plane make a jagged pattern. Thus, we have observed numeri- 
cally that the Poincare map is indeed discontinuous. See also Fig. 22. 

Next, we will review the switch time bifurcations discussed in (17) and discuss 
their relationship to the numerically observed map discontinuities, and follow with 
a discussion of the previously described jump phenomenon in the circuit. As will 
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x2(t0)=1.51 lQ.xS(tO)=-1.5469,phi-2.3661 
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FIG. 22. Waveforms corresponding to three regions in the Poincare map bridged by the two 
discontinuities. (a) Current Z, in nearly half-wave symmetric region with large conduction 
time. (b) Current I, in asymmetric region. (c) Current I, in nearly half-wave symmetric 
region with small conduction time. Note that each waveform differs from the other by a 

switch time bifurcation. 

be seen, the map discontinuities can be both numerically observed and analytically 

explained. 

5.2.6. Switch time bifurcations. In this section we show that the map dis- 
continuities observed numerically in the previous subsection are due to the fact 
that thyristor switch off time t, is a discontinuous function of both initial condition 
x(to) and delay 4. 

Recall that the thyristor circuit switches from an on to an off’ state when the 
current 1, goes to zero. When the thyristor conducts current, Eq. (34) describes the 
system dynamics, and the state trajectory is given explicitly by 

x(t+ to) = e”‘(P’y(t,,) + 
s 

’ e-ATBu(T+ to) dz) (17). 
0 

Setting to = t,,, the time at which a pulse is fired, and t = g, the thyristor conduction 
time, leads to an expression of the switching condition as 

Zr(t,) = Z,(t,,+o) = [l 0 O]x(t,,+o) = 0 

where t, is the switch-off time of the thyristor. 
Since the on state of the thyristor circuit corresponds to a linear ordinary 

differential equation with a sinusoidal input, and the matrix A has complex con- 
jugate eigenvalues, the state trajectory of system (34), if allowed to continue 
uninterrupted by the switching of the thyristor upon satisfaction of the condition 
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FIG. 23. Virtual thyristor current as a function of initial condition x(O), with fixed delay 4. 
(a) At x(0) = (0,6, 10) the first zero crossing t,\, which serves as a switch time in the complete 
circuit, is around t,\ z 0.005. (b) At x(0) = (0, 4, IO), t, has only shifted slightly, since t,> 
varies continuously with the initial condition in the neighborhood. (c) By x(0) = (0, 2, lo), 
t, has jumped in a switch time bifurcation. Switch time t,\ is not a continuous function of the 

initial conditions in general. 

Z7(t,J = 0, would resemble a modulated sine wave. Figures 23 and 24 show the 
thyristor current Z, of the on system, extended far beyond the first zero crossing, 
where the actual circuit would switch into the oZ”state, for various initial conditions 
and firing delays. We look at these extended curves, called virtual waveforms in 
(17), to better understand how the switching time t, depends on initial conditions 
and the firing delay 4. 

Figure 23(a) shows the virtual Z, current curve with initial conditions x2(O) = 6 
and x3(O) = 10 and a delay CJ = 0. Examine the location of the switch time t,, the 
first zero crossing of the virtual current. It is around t z 0.005, and occurs before 
the first local minima of the function. Figure 23(b) shows the virtual current curve 
with the initial conditions perturbed to x2(O) = 4 and x3(O) = 10. In this case a 
perturbation in the initial conditions, from x2(O) = 6 to x2(O) = 4, leads to a fairly 
small change in the switch time t,, because this perturbation lies within the set 

FIG. 24. Virtual thyristor current as a function of delay 4, with fixed initial condition 
x(0) = (0, 4, 10). (a) Delay 4 = 2.856. (b) Delay C$ = 2.618. (c) Delay 4 = 2.4166. Notice 

the switch time bifurcation. The first zero crossing, t,, is not a continuous function of 4. 
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where switch time is a continuous function of the initial condition. The switch time 
t, of the circuit at the new initial condition occurs before the first local minima of 
the virtual current, as was the case for ~~(0) = 6 and x3(O) = 10. 

However, because of the oscillatory nature of the virtual current, the switch time 
t, is not, in general, a continuous function of the initial conditions x,(O) and x3(O), 
or the delay 4. Figure 23(c) shows the virtual current with initial conditions 
perturbed to x2(O) = 2 and ~~(0) = 10. In this case a perturbation in the initial 
conditions leads to a large instantaneous jump in the switch time t,. This jump is 
referred to as a switch time bifurcation in (17). Notice that the switch time t, with 
x2(O) = 2 and x3(O) = 10 does not occur before the first local minima of the virtual 
current, as was the case at the two previously discussed initial condition values. 
Rather, the new t, occurs after many local minima of the function, around 
t z 0.025. Decreasing x,(O) has the effect of raising the first minima of the virtual 
current until it no longer intersects the Z, = 0 axis, upon which t,s, the first current 
zero crossing, will jump to what was the ith zero crossing of the current (i # 1). 
The actual bifurcation value occurs when the local minima exactly intersects the 
zero axis, at dZ,(t)/dt = 0 at the switching time t = t,i, as discussed in (17). Figure 
24 shows virtual current as a function of time for fixed initial conditions and 
varying delay times 4. As can be seen, the switch time t,, is a discontinuous function 

ofjiring delay C#I as well as the initial state of the circuit. 
Switch time bifurcations account for discontinuities in the Poincare map, like 

the ones shown in Fig. 21 (and also Figs 26,27, and 28). As formalized in Subsection 
5.3 for the general case of switched circuits, of which the TCR is one, if a change 
in initial condition Ax(to) leads to a jump in the switch time t,y, then the state 
x(t,+ T) will also jump, and this implies a discontinuity in the Poincare map of 
the circuit. Analytically, this discontinuity set is defined by the switch bifurcation 
condition dZ,(t*)/dt = 0, t* = t,y. 

In summary, it can be established that the Poincare map of the TCR circuit is 
discontinuous, and that the discontinuities arise because thyristor switch-off times 
t,r are discontinuous functions of state x(t,) and firing pulse delay 4. To illustrate, 
Fig. 22 shows a sample waveform from each of the three continuous map segments 
shown in the discontinuous Poincare map of Fig. 21. Notice that they are quali- 
tatively different, and, as expected, each differs from the other by a switch time 
bifurcation. 

5.2.7. Steady state jump phenomenon in terms qf discontinuity. In Subsections 
5.2.5 and 5.2.6 we established that the Poincart map of the TCR is discontinuous, 
and drew connections between the thyristor switch-off time jump phenomena and 
the Poincare map discontinuities. In this subsection, we return to the steady state 
jump phenomenon described previously and shown in Figs 19 and 20, and explain 
it in terms of Poincare map discontinuities. 

First, it should be noted that the presence of a discontinuous Poincare map does 
not in itself imply that the circuit will undergo a steady state bifurcation akin to 
the simple discontinuity bifurcation presented in Subsection 5.1, where a stable 
fixed point intersects a map discontinuity with the variation of a parameter. Among 
other things, for a discontinuity bifurcation to occur, a fixed point of the Poincare 
map must intersect the map discontinuity at a parameter value within the allowable 
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FIG. 25. Defining PoincarC map slices by tracing a line through the equilibrium points at 
given values of f$. 

range. Also, another stable fixed point must exist. Therefore, the existence of a 
discontinuous return map is a necessary, but not sufficient condition for the occur- 
rence of a discontinuity bifurcation of a periodic steady state with the variation of 
a circuit parameter. The remainder of this subsection is devoted to showing that the 
thyristor controlled reactor under discussion does indeed undergo a discontinuity 
bifurcation, and that it is this bifurcation which accounts for the jump phenomenon 
described in Subsection 5.1.2. 

Recall from Subsection 5.2.5 that one way of examining an otherwise hard to 
visualize Poincare map P,: R ’ --f R* is to slice it by tracing a line through the 

(x2(&), x3(&,,)) plane and plotting xZ(ton + T) and x3(&+ T) corresponding to the 
points traced out along the line, respectively. The values ,x2(fon + T) and x3(& + T) 
above each point are obtained by simulating the TCR circuit over one period, from 
t,, to t,, + T, using a point (.xz(t,,), x,(&J) as an initial condition. 

Because the object of this section is to observe how the number and placement 
of periodic orbits and map discontinuities vary with 4 in the neighborhood of the 
observed jump, we show slices of the Poincare map defined by tracing lines through 
the (x,(t,,), x3(&)) plane that connect two stable fixed points at given values of 4, 
as shown in Fig. 25, for values of 4 approaching the jump value, and then slightly 
beyond. To make the discontinuities easier to see, we plot x2(&,,+ T) -x2(&,) as a 
function of xz(t,,,) and x,(t,,+ T)-x,(&J as a function of xj(t,,) along the lines 
shown in Fig. 25 at different values of 4. We call this representation a difference 

map. 
Figures 26628 show slices of the Poincart difference map at different values of 

4. These slices are designed to give information on the number and placement of 
Poincart map fixed points, and the relative locations of discontinuities, as a func- 
tion of 4. Notice the change in shape of the map as 4 is increased. As will be 
described in detail in the next paragraphs, the fixed point denoted by a B in the 
plots approaches, and then intersects a neighboring discontinuity, and this leads 
to the loss of that fixed point and a discontinuity bifurcation. We start off by 
examining Fig. 26. 

Figure 26 shows a slice of the difference map at 4 = 2.3661 defined by the line 
x3(tO) = 2.3243x2(t0) -4.8278 through the (xZ(tO), xj(tO)) plane as represented in 
Fig. 25(a). This line passes through the two fixed points A = (x2,x3) = (6.3446, 
9.9189) and B = (x,, xX) = (1.4108, - 1.5487), sample points of the two periodic 
orbits shown in Fig. 17, marked by an A and a B in Figs 26 and 25(a). Figure 
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FIG. 26. Slice of PoincarC difference map, for 4 = 2.3661 and xi(tO) = 2.3243x,(tO) - 4.8278. 
(a) x,(tO+ T) -xz(tO) as a function of xz(tO). (b) x,(tO+ T) -x3(10) as a function of x3(tO). 
Notice triple discontinuity, and two periodic orbits at (x>(fO), x,(tO)) = (6.3446, 9.9189) 

and (1.4108, -1.5487). 

FIG. 27. Slice of Poincare difference map, for r$ = 2.3710 over xl(tO) = 2.3586x,(rO- 
4.9338. (a) x,(tO+ r) -x>(tO) as a function of x,(tO). (b) x,(tO+ 7’) -xi(tO) as a function 
of x3(@. Notice triple discontinuity, and two periodic orbits at (x2, x3) = (6.2723, 9.7651) 

and (x2,x3) = (1.4408, - 1.6472). 

26 shows MATLAB plots of x,(t,,+ r) -x1(&,,) as a function of xZ(ton) and 
x,(t,,+ r) -~~(t,,,) as a function of x3(ton) along this line in the (x,(t,), xX(Q) 
plane. Notice that the portion of the difference map slice shown has three dis- 
continuities, one just before the fixed point B = (1.4108, - 1.5487), and two 
between the Poincare map fixed points B and A = (6.3446, 9.9189). Each dis- 
continuity corresponds to a switch time bifurcation, so waveforms with initial 
conditions taken from each of the contiguous sections of the map separated by a 
discontinuity will differ in shape much like the waveforms of Fig. 22. 

Figure 27 shows a slice of the difference map at C$ = 2.371 defined by the line 
x3(t0) = 2.3586x,(tO) -4.9338 through the (x2(t0), xj(tO)) plane as represented in 
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FIG. 28. Slice of PoincarC difference map, for 4 = 2.374 over x3(fO) = 2.3615x,(tO) - 5.0637. 
(a) x,(tO+ T) -x*(fO) as a function of x*(tO). (b) x,(tO+ T) -xi(tO) as a function of xl(tO). 
Notice double discontinuity, and single periodic orbits at (x,(tO), xi(t)) = (6.3446, 9.9189) 

and (6.2279, 9.6709). 

Fig. 25(b). This line passes through the two PoincarC map fixed points 
A = (x2, x3) = (6.2723, 9.7651) and B = (x2, x3) = (I .4408, - 1.6472), sample 
points of the two periodic orbits at 6 = 2.371, marked by an A and a B in Figs 27 
and 25(b). Once again, Fig. 27 shows MATLAB plots of xZ(fon+ T)-x,(t,,) as a 
function of x,(t,,) and x,(t,,+ 7’) -xi(&) as a function of x3(&). Observe that 
the difference map slice shown has three discontinuities, as it did at 4 = 2.3661, 
but that increasing the delay 4 from 4 = 2.3661 to 4 = 2.371 results in a decrease 
in the distance between the first and second discontinuity shown, on either side of 
the fixed point B = (1.4408, - 1.6472). The PoincarC map fixed point B approaches 
a neighboring discontinuity. 

As the delay 4 is increased beyond 4 = 2.371 the discontinuities on either side 
of the fixed point B continue to approach the fixed point, until, at $ z 2.374, the 
PoincarC map no longer has two fixed points, but just one, as shown in Fig. 28. 
The fixed point B coalesces with a discontinuity, and is annihilated. A discontinuity 
bifurcation much like the simple model described in Subsection 5.1 occurs, and the 
circuit, if operating in the periodic steady state corresponding to fixed the point B 

before 4 is perturbed, jumps to the orbit corresponding to the fixed point A, as 
shown in Figs 19 and 20 and in the difference map progression shown in Figs 26, 
27, and 28. 

In summary, PoincarC map discontinuities occur at initial conditions 
(x2(1,,), xX(&,)) and delays 4 at which the state trajectory of the TCR undergoes 
switch time bifurcations, and the jump phenomenon discussed earlier and shown 
in Figs 19 and 20 is explained by a discontinuity bifurcation, wherein a stable fixed 
point intersects a Poincark map discontinuity, and the state trajectory previously 
in the steady state corresponding to the fixed point B approaches the stable fixed 
point beyond the discontinuity, A. 
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5.3. Generalization : switched circuits with discontinuous maps 
The thyristor controlled reactor circuit discussed in the previous section is an 

example of a cyclically operated power electronic circuit modeled by state con- 
trolled ideal switches in a linear network. The authors of (15) represent such circuits 
in a uniform way, as a succession of LTI state space equations of the form 

dx(t)/dt = A+(t) + Biuk,z(t), tk + Tk.,_, < t -=c tk + T,.,, (36) 

one for each of N switch configurations in the kth cycle, where Tk,” = 0 and 

tk+ I = tk+ T,,,. Thus T,,, is the duration of the kth cycle. The N-vector 

(37) 

is defined to be the transition time vector. This N-vector represents the transitions 
that occur when the system state reaches particular boundaries or threshold 

conditions, which includes thyristors turning off (the threshold condition being zero 
thyristor current) or diodes turning on (the threshold condition being zero diode 
voltage) or diodes turning off (the threshold condition being zero diode current). 
The ith threshold condition can be written as ei(x(tk),ph, T,) = 0, where pl; is an 
independent controlling parameter. In the case of the TCR, pk is $k (the kth 
firing angle that turns on the thyristor), x(t,) is the 2-tuple of initial conditions, 
[Vc(tk), IT( and Tk is the transition time vector. In compact notation, these 
constraints can be written as an N-vector constraint equation given by 

+(tk),Pk> Tk) = 

A sujjicient condition for discontinuous PoincarC maps. We can now state precise 
conditions for a Poincart map to have discontinuities in terms of the constraint 

equation. Denoting x(tk) as xk, the Poincare map is expressed as xk+, =f(xk, T,) 
with the constraint c = 0 and the Jacobian as 

[El+ [&][2], 
Rewrite [aTk/axk], using the implicit function theorem, as 

[yJ= -[&J[_gJ. (39) 

Therefore a suf$cient condition for discontinuities in the Poincare map is that the 
matrix [&/8T,] be rank de$cient. In other words, small changes in an initial 
condition of the Poincare map (Axk) results in discontinuous changes in the tran- 
sition time vector (ATk) which in turn causes discontinuous changes (Axk+ ,) in the 
next iterate of the Poincart map. n 
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This jump in Tk is called a switching time bifurcation in (17). Although switching 
time bifurcations cause discontinuities in the Poincart map, we make a distinction 
between switching time bifurcations and steady state jump bifurcations of dis- 
continuous Poincare maps. Since steady state jumps occur when fixed points collide 
with the discontinuity surfaces, the presence of switching time bifurcations are 
necessary but not sufficient for the occurence of steady state jump phenomena in 
discontinuous Poincart maps. 

VI. Summary 

This paper studied various bifurcations of periodic orbits in power electronic 
circuits : cyclic fold bifurcations, period-doubling bifurcations, and bifurcations 
due to Poincart map discontinuities. We focused on circuits operating under closed- 
loop control and/or containing nonlinear reactive components. 

Section III contains an exploration of cyclic fold bifurcations and the associated 
resonant jump phenomenon in circuits containing saturable reactors. Section IV 
gives a comprehensive overview of period-doubling phenomena in closed-loop 
DC-DC conversion circuits. We studied circuits with homeomorphic and unimodal 
Poincare maps, those that period-double a single time and those that period-double 
repeatedly in a cascade to chaos. This section ends with a result relating non- 
genericity of a period-doubling bifurcation to half-wave orbital symmetry. 

An interesting feature of power electronic circuits is that they may have Poincare 
maps that are continuous but not everywhere differentiable, or discontinuous. In 
Section V we studied, in detail, bifurcation behavior in a thyristor controlled VAR 
compensator. We showed that this circuit has a discontinuous Poincare map, and 
analyzed the steady state bifurcation in terms of the discontinuities. We showed 
that the Poincare map discontinuities are a product of circuit switch time jumps, 
and distinguished between transient behavior related to these switch time jumps 
and the observed steady state jump phenomenon. We then presented general 
conditions for a switched circuit to have a discontinuous Poincare map. The paper 
ends with an appendix, in which concepts underlying cyclic fold bifurcations for 
the case of a continuous but not everywhere differentiable map are developed. 
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Appendix A. Cyclic Folds, Continuous Poincare Maps 

Poincare maps of power electronic circuits may not be everywhere differentiable because 
of the presence of state controlled switches, In this appendix we discuss cyclic fold bifur- 
cations of circuits with Poincare maps that are continuous, but only piecewise differentiable. 

While it is still true that if the point p; E X2 is a fixed point of the map Pi (pi = P,(p,)), 
then the eigenvalues of the linearization of the differentiable map P, at pi, p,~p(DP~.(p~.)), 
where defined, reflect the stability of the fixed point pi and its corresponding periodic orbit 
1,, it is not true that they necessarily serve to signal the occurrence of a bifurcation. As in 
the everywhere differentiable case, if no eigenvalue of the linearized Poincare map (where 
defined) is on the unit circle (1~~1 # 1, Vi), the periodic orbit .fj is hyperbolic. However, 
because eigenvalues can change their values discontinuously, the condition Ip,I = 1 for some 
parameter value is not required for an orbit to bifurcate. Thus, a cyclic fold bifurcation of 
a continuous but not everywhere differentiable Poincare map may not correspond to a single 
eigenvalue pf~p(DP,) passing through + 1 transversally, as it does in the differentiable case 
discussed in the previous section. Also, the requirement (of differentiable maps) that one of 
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FIG. 29. Piecewise linear model of generic CFB for continuous but not everywhere differ- 
entiable Poincare maps. (a) At i = 15, there are two solutions. (b) At i = >.* the two 

solutions coalesce in a CFB. (c) At 3. = IT, the map has no solutions. 

the coalescing orbits be stable and the other unstable does not hold for non-differentiable 
maps. Next, we look at simple geometric models to explore the possibilities. 

Geometry/simple models 
Figure 29 illustrates a simple continuous, piecewise differentiable Poincare map under- 

going a cyclic fold bifurcation. An example of such a map, differentiable everywhere except 
at xk = 0, is as follows : 

-Yk+l = P;.(q) = 2]Xk] + l.lx,+i.. (40) 

As in the case of everywhere differentiable maps, a continuous piecewise differentiable map 
like xk+, = Pi(xk) undergoing a CFB will have a range of parameter values 1 at which the 
map has two real distinct fixed points [Fig. 29(a)], a parameter value at which the map has 
a real double fixed point [Fig. 29(b)], and a range of parameters at which the map has no 
real fixed points [Fig. 29(c)]. The map xk+ , = P;(x,) = 2]xL]+ l.lxk+l has two real fixed 
points for 1. < 0, no real fixed points for 1 > 0, and a double root pl = p2 = 0 at i = 0. As 
in the differentiable case, the parameter value at which the two fixed points coalesce and 
disappear is called the cyclic fold b$rcation point. 

Two of the main differences between generic CFBs of differentiable maps and those of 
continuous, non-differentiable maps like xk+ , = Pi(xk) are in the relationship between the 
eigenvalues of the linearized Poincare map and the presence of a CFB, and the potential 
stability combinations of fixed points undergoing a CFB. 

Unlike the case of differentiable maps, continuous, piecewise differentiable maps may 
undergo a cyclic fold bifurcation without any warning from the system eigenvalues. For 
example, the eigenvalue of the map xk+ , = 2].xL] + I.lxL+I linearized about a fixed point 
pn is 2sign(p,) + 1.1 (assumingp, # 0), where sign(x) = 1 if x > 0 and sign(x) = - 1 if x < 0. 
If pj > 0, then the eigenvalue ,u = 3.1, while if pi < 0 the eigenvalue p = -0.9. As the 
parameter i is increased from a negative value to zero, the two fixed points move together 
and coalesce at 1 = 0. However, the eigenvalues of the two orbits remain at p = 3.1 and 
p = - 0.9 during the approach, and do not reflect the coming cyclic fold bifurcation. At the 
cyclic fold bifurcation point ,I = 0, the Poincart: map is not differentiable, so the eigenvalue 
is not defined at the bifurcation point. This is in contrast to the differentiable case, in which 
an eigenvalue of the coalescing fixed points approaches + 1 as the cyclic fold bifurcation 
point is approached. This is a significant difference, and should be kept in mind when 
interpreting numerical experiments meant to identify bifurcations of circuits and other 
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xk+l xk+l 

FIG. 30. Stability combinations for CFBs of continuous but not everywhere differentiable 
Poincare maps. (a) Stability regions. (b) CFB joining a stable orbit, pl, and an unstable 

orbit, ~2. (c) CFB joining two unstable orbits. 

dynamical systems that can have non-differentiable Poincare maps, such as those found in 
power electronic circuits. 

Figure 30(b),(c) show the two possible stability configurations of orbits undergoing a 
generic cyclic fold bifurcation. Figure 30(b) shows the “typical” configuration of a stable 

fixed point pl and an unstable fixed point p2 joined in parameter space by a cyclic fold 
bifurcation point. Our simple map _Y~+, = 2/xkl+ 1 .Ix,+i is such an example, as the eig- 
envalues of the two fixed points are p = 3.1 and p = - 0.9, corresponding to an unstable 
orbit and a stable orbit, respectively. However, if we modify the map slightly to get a new 

map, 

Xk+l = 2~XiI+o.9X,+i” (41) 

then the situation changes. The map still undergoes a cyclic fold bifurcation at 1 = 0, but 
the eigenvalues are now p = 2.9 and p = 1.1, which both correspond to unstable orbits. 
This configuration, where two distinct unstable orbits meet in a cyclic fold bifurcation with 
the variation of a parameter, is illustrated in Fig. 30(c). 

This case differs sharply from the differentiable map case, which has continuous eig- 
envalues around a cyclic fold, necessarily serving to connect a stable and an unstable orbit. 
At a cyclic fold bifurcation a differentiable map has an eigenvalue p = + 1. Eigenvalue 
continuity dictates that as the bifurcation point is approached, the eigenvalues of the two 
coalescing fixed points must be p = + 1 ft: and p = + 1 -a, those of an unstable and a 
stable fixed point. Once again, it is the fact that continuous, piecewise differentiable Poincare 
maps have eigenvalues that can vary discontinuously with the parameter that leads to 
significant differences between the properties of cyclic fold bifurcations of the two map 
classes. 

The third possible stability configuration, that of two distinct stable orbits meeting at a 
cyclic fold bifurcation, cannot occur for continuous maps (with transversal bifurcations 
representable by a one-dimensional model), differentiable or not. Figure 30(a) shows a 
graphical representation of the stability regions of a fixed point, assumed in the diagram to 
be at the origin. The regions marked stable (unstable) are meant to signify the range of 
slopes of the map at the fixed point corresponding to a stable (unstable) fixed point ; those 
with magnitudes that are smaller (larger) than one. Notice that in order for a map to have 
a cyclic fold bifurcation, one of the two fixed points must have a slope that is greater than 
+ 1, and this precludes the possibility of two stable orbits meeting in a CFB. 

One more variation of a cyclic fold bifurcation that is possible for a continuous piecewise 
differentiable Poincart map but not for a differentiable Poincare map is illustrated in Fig. 
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I 4 I 

for continuous, piecewise linear Poincare maps. 
(b) At 1 = I* there is a continuum of solutions. 

: Y : 
,:’ :’ 

a) b) 

FIG. 31. Model of a non-generic CFB 
(a) At 1 = I,?, there are two solutions. 

(c) At 1 = A*,, the map has no solutions. 

3 1. This is the case where the map has a linear component of slope + 1 connected to other 
segments that together form a convex hull. As in the previously discussed cases, a map like 
this one will have a range of parameter values 1 at which the map has two real distinct fixed 
points [Fig. 3 1 (a)], and a range of parameters at which the map has no real fixed points 
[Fig. 3 1 (c)l. However, in this case the parameter value at which the two orbits “disappear” 
does not correspond to a double fixed point of the map. Rather, there will be a continuum 
of orbits linking two distinct orbits, with a range of initial values directly corresponding to 
the set of fixed points along the segment colinear with the diagonal, as shown in Fig. 31 (b). 
This type of CFB is non-generic, because it is unlikely that a piecewise linear segment of a 
Poincare map will have a slope of one and coincide with the diagonal. 
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