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Abstract—We present the design, implementation, and experi-
mental validation of FAILSAFE—a generalized methodology for
fault detection, identification, and remediation (FDIR) for switch-
ing power converters in nanogrids. FAILSAFE is a dynamical
systems approach to FDIR for switching power converters, and
can be applied to a broad class of converters and fault types.
FAILSAFE operates as part of the control loop of a switching
power converter, and uses the measurements and inputs of
the converter to achieve both fault detection and identification
(FDI) and fault remediation. In this paper, we present two
Modules for FDI—a model-based residual approach and a data-
driven multiclass Support Vector Machine (one-vs-one) approach.
Moreover, we describe the design of a fault remediation Module
by designing optimal control actions in a pre-computed reach-
avoid set. We present simulation and experimental results using a
prototype nanogrid testbed. Simulation results for the multiclass
Support Vector Machine (one-vs-one) FDI Module on a 6-
phase interleaved boost converter demonstrate fault detection
and identification with a classification accuracy of 98.9% for
a current sensor fault and 90.8% for an output capacitor fault.
Experimental results for the model-based residual FDI Module on
a boost converter demonstrate fault detection and identification
in 600 µs for a capacitor fault and 250 µs for a voltage sensor
fault.

I. INTRODUCTION

Commercial buildings consume nearly one-fifth of the pri-

mary energy in the United States. In recent years, the concept

of a ‘smart building’ has emerged as an important academic

and industrial effort towards realizing significant improve-

ments in building efficiency, comfort, and intelligence. Integral

to the concept of a smart building is its power distribution

network, or nanogrid, as shown in Fig. 1. As opposed to

buildings that purely consume energy, these nanogrids can

contain on-site energy resources, such as rooftop photovoltaics

or wind turbines. Energy storage buffers, such as batteries or

mechanical flywheels, store excess generated energy, which

can be used for building power or sold back to the utility.

Moreover, electrical loads can be scheduled based on dynamic

energy pricing, enabling demand response. Indeed, smart

building nanogrids introduce a new paradigm of how buildings

consume, generate, and store energy.

However, the confluence of power electronics systems and

buildings in these nanogrids has introduced new challenges,

particularly with respect to system vulnerability and fault

tolerance. Smart building nanogrids are challenging networks

to manage and control since electronic loads and distributed

energy resources (DERs) impose significant intermittency,

uncertainty, and dynamics. DERs make it difficult for system

operators to cope with multiple or sequential point of failures.

Switching power converters introduce new failure points in a

power distribution network. Moreover, the interaction between

converters and the propagation or cascading effect of faults

through a nanogrid remain open research questions.

In general, systems with high reliability and safety require-

ments are designed with mechanisms for fault tolerance. Fault

tolerance is the ability of a system to adapt and compensate,

in a systematic way, to random component, sensor, or input

faults, while providing completely or partially its intended

functionality [1]. There are three key elements to any fault-

tolerant system design–component redundancy, a fault detec-

tion and identification system [2]–[4], and a remediation or

reconfiguration system that, once a fault has been detected and

identified, substitutes the faulty component with a redundant

one, or reconfigures the control to compensate for the fault.

In this paper, we present FAILSAFE—a generalized

methodology for fault detection, identification, and remedi-

ation (FDIR) for switching power converters in nanogrids.

FAILSAFE is a dynamical systems approach to FDIR for

switching power converters, and can be applied to a broad

class of converters and fault types.

Fig. 2 provides an overview of the proposed FDIR concept.

As shown, FAILSAFE operates as part of the control loop of

a switching power converter, and uses the measurements and

inputs of the converter to achieve both fault detection and

identification (FDI) and fault remediation.

For conceptual simplicity, the operational objectives of

FAILSAFE are divided into two stages: (1) the fault detection

and identification (FDI) stage, and (2) the fault remediation

stage. Each stage is comprised of FAILSAFE Modules—a



Fig. 1: A prototype nanogrid for power distribution in a smart building.
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Fig. 2: Overview of FAILSAFE, as applied to an arbitrary switching power
converter.

single Module is an algorithmic implementation that can

provide the desired FDI or fault remediation functionality.

A salient feature of FAILSAFE is that a particular Module

or combination of Modules can be chosen for either stage

depending on requirements for fault tolerance or limitations

of the computation platform.

Moreover, FAILSAFE is implemented on the same compu-

tation platform as the converter control system, thus requiring

no additional computational hardware. Thus, FAILSAFE com-

plements existing legacy fault protection schemes, in essence,

adding a layer of intelligence on top of existing protection

hardware and controls, such as fuses, circuit breakers, or

current limiting control.

The remainder of the paper is organized as follows. Sec-

tion II presents an overview of the FAILSAFE methodology,

and proposes a set of Modules for converter FDI and fault

remediation. Section III presents a real-time hardware imple-

mentation of FAILSAFE and an experimental nanogrid testbed

that we use to validate the performance of the proposed

FDI and fault remediation algorithms. Section IV presents

simulation and experimental results for fault detection, identifi-

cation, and remediation in a boost converter circuit. Section V

concludes the paper.

II. FAILSAFE OVERVIEW

In this section, we present the design methodology for

FAILSAFE and provide examples of FAILSAFE Modules for

the fault detection and identification (FDI) stage and for the

fault remediation stage.

A. Stage 1: Fault detection and identification

The objectives of the fault detection and identification stage

are two fold: (1) detection, which makes a binary decision

whether or not a fault has occurred, and (2) identification,

which determines the location of the faulty component, sensor,

or input. Here, we present two Modules for FDI—a model-

based residual approach and a data-driven multiclass Support

Vector Machine (one-vs-one) approach.

1) Model-based residual FDI Module: We propose a

model-based residual FDI Module that uses a linear-switched

model of the switching power converter. This approach is

discussed by the authors in detail in [5].

Fundamentally, the model-based residual FDI Module ac-

cepts the same input u(t) as the converter (e.g. PWM signals,

input voltages, load currents) and outputs (1) a binary decision

whether a fault has occurred, and (2) if a fault has occurred, an

index that identifies the particular fault from a fault signature

library.

The model-based residual FDI Module is comprised of (1)

the real-time model-based estimator, (2) the fault detection

logic, (3) the fault signature library, and (4) the fault identifi-

cation logic.

First, given a switching power converter, we construct a

real-time model-based estimation that captures the large-signal

dynamics of the converter.

The fault detection logic consists of a model-based estimator

or observer for the switching power converter, which generates

an error residual vector of the difference between the measured

outputs of the converter and the estimated outputs.

Next, we identify faults of interest in the components and

sensors. The dynamics of each of these faults can be uniquely

modeled by a scalar fault magnitude function and a vector fault

signature, and are collected in the fault signature library.

In the presence of a particular fault, the error residual will

evolve according to the dynamics of the fault magnitude func-

tion and fault signature. Since these dynamics are calculated

a priori, the fault identification logic can identify the fault by

computing the sliding window L2-inner product between the

error residual vector and the set of fault signatures.

2) Multiclass Support Vector Machines FDI Module: We

propose a second FDI Module using multiclass Support Vec-

tor Machines (one-vs-one) to classify and detect sensor and

component faults.

Multiclass Support Vector Machines (MSVM), specifically

MSVM (one-vs-one) and MSVM (one-vs-all), are an extension

of binary Support Vector Machines (SVM) [6], [7]. Binary

SVM is used for binary classification, that is, classifying

data into one of two classes, which can be separated with

a hyperplane. Detailed presentation of binary SVM can be

found in [8]–[10]. MSVM (one-vs-one) extends binary SVM



Algorithm 1 Proposed algorithm for a multiclass SVM (one-

vs-one) FDI Module

1: Measure the states (i.e. voltages and currents) of the

converter in the normal and faulted modes of operation.

2: Build an observation matrix U as follows:

U =















u⊤n
u⊤n−1

...

u⊤2
u⊤1















where ui ∈ R
m is a measurement of the converter states

in a particular normal or faulted mode of operation, and

n is the number of the total measurements. Create a label

vector Y as follows:

Y =















yn
yn−1

...

y2
y1















where y ∈ {+1,−1,−2,−3, ...,−f} are the set of f fault

labels of the converter (+1 represents the normal mode of

operation), and n is the number of the total observations.

3: Tune the cost parameter C, and train the MSVM (one-vs-

one) model by using the value of C that gives the lowest

misclassification rate (MR). A 10-fold cross-validation can

be used in tuning and training in order to improve the

bias-variance trade-off.

4: In real-time operation, receive new test data and classify

using the trained MSVM model.

to a general case with more than two classes by training binary

SVM classifiers for all possible combinations of classes.

Multiclass Support Vector Machines (MSVM) have been

used in several classification applications, such as detection

of multiple power quality disturbances in a power distribution

network [11], fault diagnosis of a steam turbine generator [12],

assessment of power system security [13], and detection of

knee pathologies [14] among others.

Here, we present the design of a FailSafe FDI Module using

MSVM (one-vs-one).

First, we will design a binary SVM classifier. Consider a

training data set with n samples of the form {xi, yi}, i =
1, ..., n where xi ∈ R

m represents the different states of the

system and yi ∈ {1,−1} represents the labels for the binary

SVM. The objective of binary SVM is to find a hyperplane,

w⊤x+ b = 0, which will optimally separate the data into two

classes.

Thus, the binary linear SVM solves the following optimiza-

tion problem:

minimize
w

1

2
‖w‖2 +

C

n

n
∑

i=1

ξi

subject to yi(w
⊤xi + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

The value of C (cost parameter) in the optimization problem

above controls the bias-variance trade-off of the binary SVM.

A large [small] value of C will result in a wide [narrow]

margin for the optimal hyperplane. A high value of C will

cause more observation violations in the hyperplane margin,

with higher bias and smaller variance. Thus, one must properly

tune the value of C in order to minimize the overall training

(misclassification) error.

Next, we will extend the binary SVM classifier to the case

with more than two classes by considering a MSVM (one-

vs-one) framework. MSVM (one-vs-one) trains binary SVM

classifiers for all possible combinations of classes. Thus, for a

case with p classes, the classification model will train
p(p−1)

2
binary SVM classifiers. Given a test sample x, we evaluate

each of the
p(p−1)

2 binary SVM classifiers, and x is classified

according to the class with the majority of classification events.

Finally, we define the following performance evaluation

metrics:

(a) Classification accuracy (CA) determines the percentage

correctly classified samples, that is:

# of correctly classified samples

# of total samples
× 100

(b) Misclassification rate (MR) determines the percentage

of incorrectly classified samples, that is:

# of misclassified samples

# of total samples
× 100

B. Stage 2: Fault remediation

Once the FDI stage has successfully detected and identified

a fault in the converter, a fault remediation algorithm can

update the dynamical model of the converter and find a control

action to either maintain the desired service under this faulty

operation, or at least keep the system in a safe operating

condition until the fault is duly repaired.

The updated dynamical system will describe the operation

of the converter under the identified fault with some bounded

tolerance, or uncertainty. It is then possible to use viability

theory [15] to calculate a safety region, or safe set, for the

converter. In particular, given a set of state constraints K ⊂ R
m

that need to be met at all times, one would like to compute the

associated viability kernel Viab(K), defined as the set of states

x ∈ K for which there exists a control strategy u = κ(x) that

will keep any future states from leaving K. Under uncertain

faulty dynamics, one can also define the robust counterpart to

Viab(K), known as the discriminating kernel Disc(K), which

requires this ‘safe’ control strategy to keep the system in K
for all possible behaviors of the system within the defined

tolerance.

A family of numerical Hamilton-Jacobi methods [16], [17]
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Fig. 3: Two converter topologies that are used to validate the proposed FDIR
concept in simulation and hardware.

makes it possible to compute these safe sets and control

inputs for systems with low dimensionality, using dynamic

programming under a differential game formulation [18], [19].

It will often be desirable to obtain control actions to not

only keep the system within the state constraints K, but in

addition drive it into some desired target operating region

T ⊂ K (typically to restore nominal service after an initial

perturbation caused by the fault). The set of points x ∈ K
from which it is possible to safely reach T without leaving

K is usually referred to as the reach-avoid set RA, and can

be computed with the same numerical tools using a similar

formulation [20]. The fault remediation stage will employ such

methods to precompute these sets and controls for each fault.

III. IMPLEMENTATION

In order to validate the proposed FAILSAFE FDIR concept,

we use a simulation and experimental nanogrid testbed to

implement and test the FDIR algorithms.

Both testbeds are modeled as a nanogrid power distribution

network in a smart building. Specifically, we focus on dc-

dc converters used for interfacing a photovoltaic (PV) energy

source with a 380 VDC distribution bus. We consider two

dc-dc converter topologies: a boost converter (Fig. 3a) and a

Converter testing and fault injection

Typhoon HIL602

dSpace DS1103

Fig. 4: Nanogrid testbed for validating the FAILSAFE implementation. The
converter and FAILSAFE computational hardware are shown.

TABLE I: Specifications and ratings for experimental nanogrid testbed.

Switching power converter
Topology 1- and 6-phase interleaved boost
Rated input voltage 0− 200 V
Rated output voltage 380 V
Rated output power 2 kW
Switching frequency 50 kHz
Ri 0.1 Ω

Li 0.1 mH
C 400 µF

Converter control and FDIR computation platform
Platform dSpace DS1103 Controller Platform
Simulation time step 100 µs

Real-time power electronics simulator
Platform Typhoon HIL602
Simulation time step 500 ns
Analog input sampling rate 1 MHz
PWM switching frequency 50 kHz

6-phase interleaved boost converter (Fig. 3b). The parameter

values for these converters is shown in Table I.

First, we construct a simulation testbed in the MAT-

LAB/Simulink environment using the Piece-wise Linear Elec-

trical Circuit Simulation (PLECS) toolbox [21]. Specifically,

this simulation testbed is used to validate multiclass SVM

(one-vs-one) FDI Module.

Next, we construct an experimental nanogrid testbed as

shown in Fig. 4. The nanogrid testbed consists of: (1) a hard-

ware converter and fault injector, (2) a computational platform

for converter control and real-time FDIR implementation, and

(3) a high-fidelity real-time power electronics simulator for

model-based FDI Modules.

We use a dSpace DS1103 controller board to implement the

converter control and FDIR, which operates with a time step

of 100 µs. We use a Typhoon HIL 602 to implement the high-

fidelity real-time simulator [22], which operates with a time

step of 500 ns. This experimental nanogrid testbed is used to

validate the model-based residual FDI Module.

IV. RESULTS AND DISCUSSION

In this section, we present simulation and experimental

results for the FDI stage of FAILSAFE. First, we validate the

model-based residual FDI Module on a boost converter topol-

ogy using the hardware nanogrid testbed. Next, we validate
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Fig. 5: Experimental nanogrid prototype results for the model-based residual
FDI Module.

the MSVM (one-vs-one) FDI Module on a 6-phase interleaved

boost converter using the simulation testbed.

A. Model-based residual FDI Module

The proposed model-based residual FDI Module is designed

for the boost converter according to the methodology presented

in Section II-A1. We test the FDI Module on the nanogrid

testbed described in Section III.

First, we inject a component fault that causes the output

capacitance to become zero. As shown in Fig. 5a, the fault

causes a large ripple in the output voltage and also causes

the input current to fall. The FDI Module detects the fault in

100 µs, and identifies the fault in 600 µs.

Next, we inject a fault that forces the sensor gain of vout
to zero. As shown in Fig. 5b, the fault causes the voltage

measurement of the output to become zero. The FDI Module

detects the fault in 150 µs, and identifies the fault in 250 µs.

Generally, the time to fault detection depends on the time

step of the FDI computation platform (in this case, 100 µs).

Fault identification for various component and sensor faults

requires the L2-inner product calculation whose solution gen-

erally reaches steady state in under 1 ms.

TABLE II: Classification accuracy and fault identification time of MSVM
(one-vs-one) FDI Module with a tuned cost parameter C = 100.

Operating mode CA tfi

Normal (fault-free) 99.0% N/A

Capacitor fault 90.8% 32 µs

Sensor fault 98.9% 1 µs
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Fig. 6: Simulation results for the MSVM (one-vs-one) FDI Module.

B. MSVM (one-vs-one) FDI Module

Here, we will explain the implementation and results of

the MSVM (one-vs-one) FDI Module. First, as proposed

in Section II-A2, we train the MSVM model using labeled

simulation training data for the 6-phase interleaved boost

converter, and we obtain a tuned cost parameter of C = 100
using a 10-fold cross-validation. In Table II, we show the

classification accuracy and fault identification time for the

normal operating mode, a fault in the capacitor, and a fault

in the sensor. The time to fault identification is determined by

the density of the classification events.

Finally, Figs. 6a and 6b show a simulation of the MSVM

FDI classifier detecting and identifying a fault in the capacitor

and a fault in the current sensor, respectively. As shown, the

MSVM FDI Module identifies the capacitor fault in 32 µs and

the current sensor fault in 1 µs.



V. CONCLUSIONS

We have presented the design, implementation, and ex-

perimental validation of a generalized methodology for fault

detection, identification, and remediation (FDIR) for switch-

ing power converters in nanogrids. The dynamical systems

approach enables the technique to be applied to a broad

class of converters and fault types. In this paper, we demon-

strated simulation and experimental results on a nanogrid

testbed for two fault detection and identification Modules—

one using a model-based residual approach, and the other

using a data-driven multiclass Support Vector Machine (one-

vs-one) approach. Moreover, we presented the design of a fault

remediation Module by designing optimal control actions in a

pre-computed reach-avoid set. The proposed methodology can

encapsulate the dynamics of a broad class of converter topolo-

gies and faults. In this way, FAILSAFE enables a flexible and

scalable solution for improving reliability and fault tolerance

in an array of power electronics applications.
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