
Real-Time Model-Based Fault Diagnosis for

Switching Power Converters

Jason Poon, Ioannis C. Konstantakopoulos, Costas Spanos, Seth R. Sanders

Department of EECS

University of California, Berkeley

Berkeley, CA 94720

Email: jason@berkeley.edu

Abstract—We present the analysis, design, and experimental
implementation of a fault diagnosis method for switching power
converters using a model-based estimator approach. The fault
diagnosis method enables efficient detection and identification
of component and sensor faults, and is implemented on the
same computation platform as the control system. The model-
based estimator operates in parallel with the switching power
converter, and generates an error residual vector that can be
used to detect and identify particular component or sensor faults.
This paper presents an experimental demonstration for a 1.2 kW
rack-level uninterruptable power supply (UPS) dc-dc converter
for data center applications. Simulation and experimental results
demonstrate fault detection and identification for various com-
ponent and sensor faults in the converter. Moreover, we show
that the proposed fault diagnosis design and analysis methods
are applicable to a broad class of converter topologies and fault
types.

I. INTRODUCTION

In recent years, there have been renewed efforts towards re-

alizing more efficient and less redundant data center power dis-

tribution systems, while still maintaining high reliability and

fault tolerance. In many safety-critical and high-availability ap-

plication domains, model-based fault diagnosis is an effective

method of achieving these goals while minimizing additional

costs and system complexity [1]–[3].

In existing works, model-based fault diagnosis has been

successfully applied in certain switching power converter

applications [4]–[8]. However, most of these approaches target

specific faults that occur in a particular converter topology,

such as a short-circuit switch fault in a three-phase voltage-

source inverter, and are not easily expandable to different

converter topologies or fault types.

Recent works have made progress towards a generalized

framework for model-based fault diagnosis in switching power

converters. In [9], [10], the authors propose a switched linear

observer-based approach for fault detection and identification

in three-phase ac-dc power electronics systems using an aux-

iliary computation platform to solve the observer in real-time.

In this paper, we extend this framework by considering a

model-based estimator with no output injection. Moreover, the

estimator is implemented on the same computation platform

as the control system, thus requiring no additional hardware.

The proposed fault diagnosis method complements existing

fault protection schemes, in essence, adding a layer of ‘intel-

ligence’ on top of existing protection hardware and controls.

The fault diagnosis method enables efficient detection and

identification of arbitrary component and sensor faults, and

can be generalized for a broad class of converter topologies

and fault types. We present a real-time digital implementation

of the proposed fault diagnosis method for a 1.2 kW rack-

level uninterruptable power supply (UPS) dc-dc converter for

data center applications. Simulation and experimental results

demonstrate successful fault detection and identification for a

set of component and sensor faults in the dc-dc converter.

The remainder of the paper is organized as follows. First,

Section II presents the design of the fault diagnosis method

for a rack-level UPS module converter. We analyze the faulted

converter dynamics to construct a set of ‘fault signatures,’

which can be used to detect and identify converter faults.

Section III presents an experimental implementation of the

fault diagnosis method using a field-programmable gate array

(FPGA) device that performs the converter control and solves

the model-based estimator in real-time. Section IV presents a

generalization of the fault diagnosis method to a broad class

of switching power converters. Section V concludes the paper.

II. DESIGN METHODOLOGY FOR RACK-LEVEL UPS

DC-DC CONVERTER

In this section, we present the design methodology for

model-based fault diagnosis for the rack-level UPS dc-dc

converter shown in Figure 1. The complete specifications for

this converter are presented in Table I.

The basic principles of operation of the fault diagnosis

method are as follows. First, given a switching power con-

verter, we construct a linear time-varying dynamical model

that captures the large-signal dynamics of the converter. Next,

we identify faults of interest in the components and sensors.

The dynamics of each of these faults can be uniquely modeled

by a scalar fault magnitude function and a vector fault signa-

ture. We construct a model-based estimator for the switching

power converter, which generates an error residual vector of

the difference between the measured outputs of the converter

and the estimated outputs. We can show that the open-loop

error dynamics are stable (see [11]). Moreover, due to the

lossiness in the converter and corresponding model, the error

residual is zero in the steady state for a fault-free system. In

the presence of a particular fault, the error residual will evolve

according to the dynamics of the fault magnitude function
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Fig. 1: A data center power distribution network configuration. The converter topology of the rack-level UPS module is shown.

TABLE I: Specifications for conveter experimental testbed.

Switching power converter
Topology 6-phase boost converter
Rated output voltage 11.8 V
Rated output current 100 A
Rn 0.1 Ω
Ln 0.1 mH
C 400 µF

Battery pack
Battery cell K2 Energy LFP26650EV
Nominal vbatt 9.6 V
Pack capacity 25.6 A-h

Real-time computation platform
FPGA device Xilinx Virtex-6 ML605
Estimator solver time step 500 ns
Analog input sampling rate 1 MHz
PWM switching frequency 50 kHz

and fault signature. Since these dynamics are calculated a

priori, we can efficiently detect and identify the fault by

computing the sliding window L2-inner product between the

error residual vector and the set of fault signatures.

A. Converter modeling

First, we construct a linear-time varying model of the dc-

dc converter operating in continuous conduction mode. We

assume that the switches SWn,t and SWn,b for n = 1...6 are

ideal, and are controlled by an ideal complementary switching

signal vector k(t), where kn(t) = 1 indicates that SWn,t is

‘on’ and SWn,b is ‘off’, while kn(t) = 0 indicates that SWn,t

is ‘off’ and SWn,b is ‘on’. Thus, the dynamical model of the

converter is:

dx(t)

dt
= A(t)x(t) +Bu(t), (1)

y(t) = Hx(t), (2)

where
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B. Fault modeling

Next, we model the dynamics of the system under faulted

conditions. Consider a fault in the inductor Ln of the nth

phase of the converter that causes the value of the inductance

to change by a quantity ∆L. The fault manifests as an additive



TABLE II: Component fault in Ln causing ∆L change in inductance.

Component φi fi

L1
R∆LiL1

(t)+k1(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L) [1, 0, 0, 0, 0, 0, 0]T

L2
R∆LiL2

(t)+k2(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L) [0, 1, 0, 0, 0, 0, 0]T

L3
R∆LiL3

(t)+k3(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L) [0, 0, 1, 0, 0, 0, 0]T

L4
R∆LiL4

(t)+k4(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L) [0, 0, 0, 1, 0, 0, 0]T

L5
R∆LiL5

(t)+k5(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L) [0, 0, 0, 0, 1, 0, 0]T

L6
R∆LiL6

(t)+k6(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L) [0, 0, 0, 0, 0, 1, 0]T

TABLE III: Component fault in C causing ∆C change in capacitance.

Component φi fi

C − ∆C
C(C+∆C) iload(t)−

6
∑

n=1

∆Ckn(t)
C(C+∆C) iLn

(t) [0, 0, 0, 0, 0, 0, 1]T

term ∆A and ∆B in A(t) and B, respectively. Thus, the

dynamics of the converter in the presence of this fault are:

dx(t)

dt
= (A(t) + ∆A)x(t) + (B +∆B)u(t) (3)

With simple algebraic manipulation, we can rewrite (3) as

the sum of (1) and the product of a scalar component fault

magnitude function φi and a vector component fault signature

fi, that is:

dx(t)

dt
= A(t)x(t) +Bu(t) + φifi, (4)

where, in the case n = 1,

φi =
R∆LiL1

(t) + k1(t)∆LvC(t)−∆Lvbatt(t)

L(L+∆L)
,

fi = [1, 0, 0, 0, 0, 0, 0]T

We can calculate φi and fi for n = 1...6, as shown

in Table II. Similarly, we can use the same process to de-

termine φi and fi for faults that affect the capacitance of

the output capacitor C and for faults in a switch pair that

force SWn,t → ‘off’ and SWn,b → ‘on’. The results of these

derivations are shown in Tables III and IV.

Sensor faults manifest differently in the system dynamics

than component faults. For example, consider the effect of a

fault in the input current (iin) sensor that causes a perturbation

in the sensor gain ∆G1 and in the sensor offset ∆E1. The fault

manifests as an additive term ∆H and ∆Ej in the output

readout map as follows:

y(t) = (H +∆H)x(t) + ∆Ej (5)

We can rewrite (5) as the sum of (2) and the product of a

scalar sensor fault magnitude function θj and a vector sensor

TABLE IV: Fault in switch pair forcing SWn,t → ‘off’ and SWn,b → ‘on’.

Component φi fi

SW1,t/b k1(t) [ 1LvC , 0, 0, 0, 0, 0,−
1
C iL1

]T

SW2,t/b k2(t) [0, 1
LvC , 0, 0, 0, 0,−

1
C iL2

]T

SW3,t/b k3(t) [0, 0, 1
LvC , 0, 0, 0,−

1
C iL3

]T

SW4,t/b k4(t) [0, 0, 0, 1
LvC , 0, 0,−

1
C iL4

]T

SW5,t/b k5(t) [0, 0, 0, 0, 1
LvC , 0,−

1
C iL5

]T

SW6,t/b k6(t) [0, 0, 0, 0, 0, 1
LvC ,−

1
C iL6

]T

TABLE V: Fault in sensor affecting sensor gain and offset.

Sensor θj gj

iin ∆G1(t)iin(t) + ∆E1(t) [1, 0]T

vout ∆G2(t)vout(t) + ∆E2(t) [0, 1]T

fault signature gj , that is:

y(t) = Hx(t) + θjgj (6)

where

θj = ∆G1(t)iin(t) + ∆E1(t),

gj = [1, 0]T

We can use the same process to determine θj and gj for

faults in the output voltage sensor (vout) as shown in Table V.

C. Estimator design and implementation

From Section II-B, we see that the state space dynamics of

the switching power converter contain valuable information,

particularly the fault magnitude function and fault signature,

that can be used to detect and identify faults. Thus, we
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Fig. 2: Simulation of estimator response in nominal and component and sensor fault states.

TABLE VI: Normalized fault signatures for component and sensor faults (note

that ξ = ( vC(t)2

L2
+

iLn
(t)2

C2
)−

1

2 ).

Faulted component Hfi

Ln [1, 0]T

C [0, 1]T

SWn,t/b ξ[ vC(t)
L ,−

iLn
(t)

C ]T

Faulted sensor gj

iin [1, 0]T

vout [0, 1]T

propose a model-based estimator that can be used to isolate

these components from the measured outputs of the converter.

Consider a switched linear estimator of the following form:

dx̂(t)

dt
= A(t)x̂(t) +Bu(t) (7)

γ(t) = y(t)−Hx̂(t) (8)

where x̂(t) is an estimate of the state vector x(t), γ(t) is the

error residual vector, and A(t), B, and H are the state space

matrices that describe the ideal converter dynamics. In some

applications, one might use output injection to compensate for

parameter uncertainty and non-linearities that occur in A(t),
B, and H . However, we deliberately eschew this approach, and

will demonstrate that these discrepancies naturally manifest

as components of the fault magnitude function and fault

signature.

The dc-dc converter and model-based estimator are simu-

lated in MATLAB/Simulink using the Piecewise Linear Elec-

trical Circuit Simulation (PLECS) toolbox [12].

Fig. 2a shows the nominal (fault-free) response of the error

residual vector. Due to the modeled lossiness in the estimator

and the natural lossiness in the converter, we have that the

error residual vector is zero in steady state.

Next, we introduce faults in the converter and analyze the

dynamics of the error residual vector. Using the analysis of the

faulted response of the converter presented in Section II-B,

we can construct a normalized fault signature, which is the

normalized vector function of Hfi and gj . The normalized

fault signature, denoted as Hfi for component faults and gj
for sensor faults, is an element of the output readout vector

function space, as shown in Table VI. We take the L2-inner

product between the error residual vector and the set of all

normalized fault signatures on an interval [t − W, t], where

W is the duration of the interval. We select W to be roughly

ten switching cycles of the converter, which enables the inner

product calculation to reach steady state in around 1 ms. For

components faults, the inner product is:

〈γ(t), Hfi〉L2 =

∫ t

t−W

γT (τ)Hfi(τ) dτ (9)

Similarly for sensor faults, we have 〈γ(t), gj〉L2 on an interval

[t−W, t]. In the presence of a fault, the result of the L2-inner

product will reveal the fault signature that γ(t) most closely

aligns with, and thus, enable fault identification.

Consider a component fault causing the inductance of L6

to reduce by 50 percent. From (4), we have that the faulted

dynamics of x(t) contain an additional term φifi. Thus,

from (8), the error residual vector will contain an additional

component in the direction of Hfi = [1, 0]T . Indeed, as shown
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Fig. 3: Experimental results of real-time estimator response in nominal and
component and sensor fault states.

in Fig. 2b, we see that when the fault is injected at t = 0.02 s,

γ1(t) becomes nonzero and γ2(t) remains essentially zero.

We can follow a similar procedure to identify Hfi for faults

occurring in the output capacitor C and in the switch pair

SWn,t/b, as shown in Table VI. We see in Figs. 2c and 2d

that in the faulted steady state, γ(t) contains the respective

Hfi components.

Now, consider a sensor fault that forces the sensor gain

of iin to zero. From (6), we see that the faulted dynamics

of y(t) contain an additional term θjgj . Thus, from (8), the

error residual vector in steady state will contain an additional

component in the direction of gj = [1, 0]T . As shown in

Fig. 2e, we see that when the fault is injected at t = 0.02 s,

γ1(t) becomes nonzero and γ2(t) remains zero.

III. REAL-TIME EXPERIMENTAL IMPLEMENTATION

In this section, we present an experimental implementation

of the model-based estimator for fault diagnosis for the rack-

level UPS module. The full specifications for the experimental

testbed are presented in Table I.

A. Real-time implementation on FPGA-based control platform

A single field programmable gate array (FPGA) device

performs the converter control and solves the model-based

estimator from (7) and (8) in real-time. The FPGA platform

is designed for low-latency execution of switched linear state

space models of switching power converters (see [13]).

The model-based estimator is solved in discrete time with

a fixed 500 ns time step, including input-output latency.

Measurements from the converter (i.e. vbatt(t) and iin(t))
are sampled with a 16-bit ADC at 1 MHz for control and

estimation purposes. The FPGA generates a 50 kHz PWM

signal for converter control (i.e. k(t)) with a 32-bit internal

counter, which is directly passed to estimator computation.

B. Results and discussion

First, we test the nominal (fault-free) response of the es-

timator as shown in Fig. 3a. As expected, the error residual

vector remains essentially zero in steady state.

Next, we inject a fault in the switch pair SW6,t/b that

replicates the switch fault presented in Section II-C, that is,

SW6,t → ‘off’ and SW6,b → ‘on’ for all t > 0. The fault is

injected into the converter using external MOSFETs that force

conduction through the SW6,b path and prevent conduction

through the SW6,t path. As shown in Fig. 3b, when the fault

is injected at t = 0, the error residual vector γ(t) becomes

non-zero in 500 ns, which enables fault detection. Moreover,

γ(t) evolves in the direction of the normalized component

fault signature Hfi predicted in Table VI.

Finally, we inject a fault that forces the sensor gain of iin
to zero, as in Section II-C. As shown in Fig. 3c, when the

fault is injected at t = 0, γ1(t) becomes nonzero in 500 ns

and γ2(t) remains zero, as predicted by the normalized sensor

fault signature gj in Table VI.

Generally, the time to fault detection is on the order of

magnitude of the estimator solver time step (500 ns). Fault

identification for various component and sensor faults requires

the L2-inner product calculation whose solution reaches steady

state in around 1 ms. Moreover, the fault diagnosis framework

is flexible in that additional component and sensor faults can

be accounted for by including the appropriate normalized fault

signature.

IV. GENERALIZATIONS FOR ARBITRARY SWITCHING

POWER CONVERTERS

In this section, we generalize the methodology presented in

Section II as to demonstrate the applicability of the proposed

fault diagnosis method to a broad class of switching power

converters.

A. System and fault modeling framework

First, we present a general modeling framework to de-

scribe the dynamics of the system under nominal and faulted

conditions. The large-signal dynamics of a switching power

converter can be represented as a switched linear system,

that is, a collection of topological configurations coupled

with a switching signal, which specifies the active topological

configuration at a given time instance. Let P indicate the

set of feasible configurations of a switching power converter.



The dynamics of each configuration can be modeled in state-

space form by applying Kirchhoff’s laws to the resulting linear

circuit. The active configuration of the system can be uniquely

defined by a switching signal function σ(t), which is the map

σ : [0,∞) → P . We can develop the switching power

converter model as follows:

dx(t)

dt
= Aσ(t)x(t) +Bσ(t)u(t), (10)

y(t) = Hx(t), (11)

where x(t) is the state vector, y(t) is the output readout vector,

u(t) is the input vector, and Aσ(t), Bσ(t), and H are the state-

space dynamics of the active configuration indicated by the

switching signal σ(t) [14].

Next, we present the model for the dynamics of the system

under faulted conditions. The faulted dynamics are modeled as

the product of a scalar fault magnitude function and a vector

fault signature. This product can be summed with the nominal

system dynamics to describe the dynamics of the system in the

faulted state. It is important to note that the fault magnitude

function and fault signature are not linearly additive terms,

and instead can be affine functions of t, σ(t), x(t), and u(t).

We define two possible classes of faults: (1) component

faults, that is, faults that manifest as changes in Aσ(t) and

Bσ(t), and (2) sensor faults, that is, faults that manifest as

changes in H .

1) Component faults: Consider the class of possible com-

ponent faults, the ith of which is described by a scalar

component fault magnitude function φi,σ(t)(t, x(t), u(t)) and

a vector component fault signature fi. The dynamics of the

switching power converter in the presence of this fault can be

described as:

dx(t)

dt
= Aσ(t)x(t) +Bσ(t)u(t) + φi,σ(t)fi (12)

where x(t), y(t), u(t), Aσ(t), and Bσ(t) are as above.

2) Sensor faults: Sensor faults differ from component faults

in that they affect elements of H instead of elements of Aσ(t)

and Bσ(t). Consider the class of possible sensor faults, the

jth of which is described by a scalar sensor fault magnitude

function θj,σ(t)(t, x(t), u(t)) and a vector sensor fault signa-

ture gj . The dynamics of the switching power converter in the

presence of this fault can be described as:

y(t) = Hx(t) + θj,σ(t)gj (13)

where x(t) and H are as above.

B. Estimator design for fault diagnosis

Here, we will motivate and present the general design of the

model-based estimator for fault diagnosis in switching power

converters.

1) Properties for fault diagnosis: A fault diagnosis system

generally has two essential functions: fault detection and fault

identification.1 Fault detection is the process of detecting

the occurrence of a fault in a system that produces some

undesirable or unintended behavior. Fault identification is the

process of classifying the precise fault that occurred and

identifying the faulty component or sensor [15].

Consider a switched linear estimator with inputs u(t), y(t),
and σ(t) that outputs an error residual vector γ(t). From the

system and fault modeling framework previously developed,

we can identify the properties that the error residual vector

γ(t) must satisfy in order to enable adequate fault detection

and identification.

In the fault-free state (i.e. nominal model), the residual is

zero in steady state. When the ith component fault occurs,

the residual becomes non-zero, which enables fault detection,

and evolves according to the term Hφi,σ(t)fi, which enables

component fault identification. Similarly, when the jth sensor

fault occurs, the residual becomes non-zero, which enables

fault detection, and evolves according to the term θj,σ(t)gj ,

which enables sensor fault identification.

2) Estimator design and dynamics: To achieve the desired

fault diagnosis properties, we propose a switched linear esti-

mator of the following form:

dx̂(t)

dt
= Aσ(t)x̂(t) +Bσ(t)u(t) (14)

γ(t) = y(t)−Hx̂(t) (15)

where x̂(t) is the estimated state vector, γ(t) is the error resid-

ual vector, u(t), y(t), and σ(t) are obtained via measurement,

and Aσ(t), Bσ(t), and H are as in (10) and (11).

The open loop error dynamics are stable, that is, that the

trajectories x̂(t) and x(t) cannot diverge.2 Moreover, due to

lossiness in the converter and the corresponding model, we

can show that x(t)− x̂(t) asymptotically converges to zero in

steady state [16].

In the nominal operating state, the dynamics of the error

residual vector γ(t) are as follows:

de(t)

dt
= Aσ(t)e(t) (16)

γ(t) = He(t) (17)

where e(t) := x(t)−x̂(t). Since e(t) asymptotically converges

to zero, γ(t) will converge to zero in the fault-free state, as

desired.

Component faults manifest as changes in Aσ(t) and Bσ(t).

Consider the ith component fault. The dynamics of the error

1Some definitions of fault diagnosis include a third function: fault analysis,
in which the magnitude and cause of the fault is determined. We include some
of these properties, particularly the determination of fault magnitude, in our
definition of fault identification.

2One can construct a natural Lyapunov function V (γ) corresponding to the
energy in the increment of the switching converter. Results from [11] prove
that V̇ (γ) ≤ 0 for a lossy switching converter containing linear passive
reactive elements, switching elements, and time-varying sources.



residual vector γ(t) in the presence of this fault are as follows:

de(t)

dt
= Aσ(t)e(t) + φi,σ(t)fi (18)

γ(t) = He(t) (19)

In this case, the non-zero magnitude of the component

fault magnitude function φi,σ(t)(t, x(t), u(t)) causes γ(t) 6= 0,

which enables fault detection. Moreover, γ(t) will evolve in

the direction of Hfi. Thus, by computing the L2-inner product

〈γ(t), Hfi〉L2 on an interval [t−W, t], where Hfi denotes the

normalized Hfi, we can identify the fault signature that γ(t)
most closely aligns with, and thus, achieve fault identification.

Sensor faults manifest as changes in H . Consider the jth

sensor fault. The dynamics of the error residual vector γ(t) in

the presence of this fault are as follows:

de(t)

dt
= Aσ(t)e(t) (20)

γ(t) = He(t) + θj,σ(t)gj (21)

Again, e(t) will asymptotically converge to zero. Thus, γ(t)
will asymptotically converge to the sensor fault magnitude

function and fault signature θj,σ(t)gj , which enables fault

detection since γ(t) 6= 0. Moreover, we can compute the L2-

inner product 〈γ(t), gj〉L2 on an interval [t−W, t], where gj
denotes the normalized gj , to identify the appropriate sensor

fault.

V. CONCLUSIONS

This paper presented a real-time model-based fault diagno-

sis method for a rack-level UPS dc-dc converter. We presented

the analysis and experimental implementation of the model-

based estimator for a set of component and sensor faults.

Moreover, we presented a generalization of the fault diagnosis

method as to provide a scalable framework to encapsulate the

dynamics of arbitrary converter topologies and faults. In this

way, the proposed fault diagnosis method enables a flexible

solution for improving reliability and fault tolerance in an

array of power electronics applications.
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