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Power density in Converters
I Inductors and capacitors

I size ∝ 1
fs

I Slow improvements in size and
performance

I Semiconductors
I Switching loss ∝ fs
I Great advances in recent years

I Heatsink: Hard to extract heat from
small volumes

Kolar, J.W.; Biela, J.; Waffler, S.; Friedli, T.; Badstuebner, U., “Performance trends and limitations of power
electronic systems,” CIPS, 2010 6th Int. Conf. , vol., no., pp.1,20, 16-18 March 2010
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Power density trends

J.W. Kolar,U. Drofenik, J. Biela, M.L. Heldwein, H. Ertl, T. Friedli and R.D.
Simon, “PWM Converter Power Density Barrier”, IEEJ Transactions on Industry
Applications (Section D), Volume: 128-D, Issue: 4, April 2008.

SUPER-Lab: VHF (J.R.) November 4, 2015 3 / 51 Stanford University



Very High Frequency Power Electronics
Switching at 10’s of MHz
I High frequency operation reduces the energy storage

requirements of inductors and capacitors.

I Inductors are small enough to be fabricated with an air-core

Use PCB to implement inductors
I Inductances and capacitances can be implemented within the

PCB

I Filters and EMI shielding can also be implemented within the
PCB.

New Circuit Topologies
Implement rectifiers that reduce switch stress allowing for higher
overall gains.

I Use better switches with lower parasitics
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Why switching at 10s of MHz?
Power
Density

Frequency

~500W/in3

~50W/in3
Conventional

Air-Core

~200KHz ~1MHz ~10MHz ~500MHz

The promise of VHF power conversion
Reduced energy storage→ Smaller passive components & Faster
transient response

J. S. Glaser, et al, ”A 900W, 300V to 50V dc-dc power converter with a 30 MHz
switching frequency,” In Proc. Twenty-Fourth Annual IEEE Applied Power
Electronics Conf. and Exposition APEC 2009, pp. 1121-1128, 2009.
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Device Switching Loss
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Switching loss (hard switching)
I V-I overlap during device switching

I Includes device charge removal at turn off (device recovery)
I Includes device capacitance discharge at turn on

I Energy stored at turn off, discharged at turn on (if not ZVS)

Loss dependency
I Proportional to switching frequency

I Some components increase with load current, some independent

I Increase as device area increases
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Soft Switching Operation
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Resonant Zero-Voltage Switching reduces switching loss (e.g.,
Class E)
I V-I overlap loss greatly reduced via capacitive snubbing

I ZVS turn-on avoids capacitive energy dump

Strategy is effective, but
I Only efficient over a narrow load range

I Control becomes challenging at very high frequencies
I Device stresses are high for many topologies

I increased conduction loss
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Magnetic Losses

Conventional cored magnetics

I Core loss increases rapidly with frequency (∝fk)

I Good core materials become scarce above 10 MHz

I An optimum frequency range exists for cored inductors

At high enough frequencies, the inductor values needed are
small
I Build entirely coreless designs

I Air-core components not subject to Curie temperature limitations

Core-less magnetics
I Get better as frequency increases

I Easier to integrate

I Can be made self shielding in some cases
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Air-core inductors for VHF converters

I Air-core components not subject to saturation or Curie
temperature limitations

I Toroidal are an improvements over solenoids as the magnetic
field is constrained to the torus
I Lower stray fields→ Lower EMI issues

I PCB toroids have better copper coverage and lower loss and very
repeatable

I Better air-core passives are possible with new fabrication
techniques: 3D-printing
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Path forward

Replacing solenoids with toroids→ Printing passives within inner
layers of PCB.
I Top and bottom layers function as EMI shield and heatsink
I Planar-stackable structure
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“one turn” inductance

I one turn axial direction inductance that can lead to EMI, extra
losses on the ground plane

I Also results in current crowding on the inner ring of the toroid
I For air core inductors, the “one turn” inductance is comparable

in value to the toroidal value
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“one turn” inductance cancellation

I We can place two inductors with same dimensions but opposite
winding direction vertically stacked to cancel the axial fields.
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Capacitor Implementation: dielectric loss

I Capacitors in the converter experiences high frequency (27.12
MHz) and high voltage swing(e.g. greater than 500 V)

I Low “loss tangent” is the key to select dielectric material

FR4 Rogers 4360G2

εr 4.5 6.15
tanδ 0.018 0.0038

I For example, for a capacitor with 20mm × 20mm, 0.3mm
thickness, and 300 VRMS,

Ploss,FR4 = V2
RMS ×

ωε0εrtanδA
d

= 6.4W

Ploss,Rogers4360 = V2
RMS ×

ωε0εrtanδA
d

= 1.8W
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Capacitor Implementation

I To minimize dielectric loss, we avoid having high voltage node
and ground node through FR4
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PCB implementation

I FR4 and Rogers laminates used for inductors and capacitors
respectively. They are mechanically holed together to form a
stack
I Rogers laminates was limited to capacitor implementation due to

cost considerations
I Rogers has much better electrical and thermal characteristics
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Dc-dc Converter

I Inverter, matching network, rectifier stage

I The matching network is chosen such that no dc block is
necessary in the inverter stage

I All inductors and capacitors are resonant and feasible to
implement in PCB
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Bill of Material

Part Value Description

LF 105 nH 2 × 52.5 nH PCB inductor (Q=85@27.12MHz)
LMR 105 nH 2 × 52.5 nH PCB inductor (Q=85@27.12MHz)
LS 180 nH 2× 90 nH PCB inductor (Q=90@27.12MHz)
LM 67 nH 2× 134 nH PCB inductor (Q=94@27.12MHz)
LR 81 nH 1× 81 nH PCB inductor (Q=100@27.12MHz)

CMR 82 pF 0.3 mm Rogers 4360G2
CP 160 pF 0.3 mm Rogers 4360G2

CM1 235 pF 0.254 mm Rogers 6010.2LM
CM1 436 pF 0.254 mm Rogers 6010.2LM

CIN 3 µF X7R capacitor
COUT 6 µF X7R capacitor

MOSFET GS66508T 650 V GaN FET
Diode STPSC4H065B-TR 650 V SiC shottky diodes

I PCB implementation greatly simplifies the tuning and improves
repeatability

I Input and output filter capacitors implemented with SMD device.

I Multi-resonant structure are currently under investigation to
reduce capacitor size to some extent
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Prototype Implementation

Specs

VIN 170V
VOUT 28V
POUT 320W
η 73.6 %
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Prototype waveforms
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3D printed passive components

(a) 3D CAD model (b) 3D printed plastic mold (c) cast silver model
Fig.: Steps in the fabrication of a 3D inductor. (a) shows the OpenJSCAD model, (b) shows a translucent plastic model and (c)
shows a sterling silver inductor. The 3D inductor has 10nH inductance and its dimensions are OD=18mm, ID=6mm, N=4. Also
notice the rounded cross section.

I 3D printing can overcome limitations of PCB and wire-wound
inductors

I Overhangs, curved surfaces, texture possible
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Preliminary designs (Circular Cross Section)

(a) CAD (b) Cast (c) FEM
Fig.: toroid inductor with a round cross section. OD=29mm, ID=11mm, N=20.

(a) CAD (b) Cast (c) FEM
Fig.: Toroid inductor with a round cross section and two parallel windings. OD=28mm, ID=13mm, N=4.
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Preliminary designs

(a) CAD (b) Cast (c) FEM
Fig.: Toroid inductor with a round cross section and four parallel windings. OD=21mm, ID=10mm, N=4.
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3D printed inductor with optimal cross-sections
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3D printed converters
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Harsh environment operation
Operation at high temperature

I Air-core inductors don’t saturate or
have Curie temperature limitation

I WBG high-temp semiconductors will
enable new applications
I Power converters in engines,

catalytic converter

Operation an large magnetic fields

I Conventional converters not MRI
friendly

I Ferromagnetic components saturate
I Air-cored converters can operate inside

magnet
I Harmonics miss imaging bands
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Good progress made in low voltage power electronics

Low Voltage Power
Conversion

I Focus on moderate gain
ratio step down

I Efficient, power dense
converters commercially
available

I Efficiencies in the upper
90%s

I Power densities
approaching 3 kW/in3

VICOR 400 V to 50 V dc-dc

I 2750 W/in3

I ≈98% efficient

I 1750 W

www.vicor.com
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High voltage supply development has Lagged

I High voltage power supplies
remain expensive and
relatively inefficient

I If fast pulses are needed a
high voltage switch is
generally used in conjuction
with a capacitor

I Efficiencies in the 60%s are
common

I Typical power densities
<10 W/in3

Ultravolt High Power C Series

I 9 W/in3

I 30 V to 2000 V dc-dc

www.ultravolt.com
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high voltage circuits

I Various circuits can be used
to generate high voltages:
I Fly-back converters
I Marx generators
I Cockcroft–Walton

multiplier
I Quasi–resonant, resonant

converters
I and cascaded versions of

these
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I Parasitics, output impedance, device stress, etc, impose practical
limits to the number of stages that can be cascaded to produce
large voltage gains
I CockcroftWalton multiplier limited to 10-12 stages due to loading

effects
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High tech applications demand innovation

I Applications in medical,
space, military, etc. require
short pulses of high voltage

I Transient response of
conventional supplies is
typically slow

Anderson R., et. al “Simulation of a medical linear accelerator
for teaching purposes” Journal of Applied Clinical Medical
Physics, 2015

I Fast pulses generally require a fast high voltage switch
discharging a large storage capacitor

I Charging time limits pulse duty cycle

I Energy stored within the circuit is high
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Resonant converter structure

Inverter Transformation
Stage

Rectifier

Control

Vin RL
+

−

Inverter
Takes dc input
power, deliver ac
power

Transformation stage
Provides impedance
matching

Rectifier
Takes ac power,
delivers dc power to
RL

[2] J.M. Rivas, O. Leitermann, Y. Han, et al, “A very high frequency dc-dc converter based on a class Φ2 resonant inverter,” in
Proc. Power Electronics Specialists Conference, 2008. pp. 1657-1666
[4] W. Liang, J. Glaser, and J. Rivas, 13.56 MHz high density dc-dc converter with PCB inductors, in Proc. 2013 Twenty-Eighth
Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 633640.
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Previous work involving a single stage resonant design
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I 40 V to 500 V 27.12 MHz step up design was tested

I Output voltage limited by rectifier diode ratings

I Matching network quality factor (Q) increases with increasing
gain ratio

[5] Raymond, L.; Wei Liang; Jungwon Choi; Rivas, J., “27.12 MHz large voltage gain resonant converter with low voltage
stress,” Energy Conversion Congress and Exposition (ECCE), 2013 IEEE , vol., no., pp.1814,1821, 15-19 Sept. 2013
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Class-D rectifier modification

I vdiode,max = VOUT

I Relatively low equivalent
input resistance compared to
related resonant rectifier
topologies

I DC blocking capacitor can be
split to achieve isolation
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Isolation allows for multiple rectifiers
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I Isolated rectifiers can be
driven in parallel from a
single input source

I Equivalent resistance seen by
the ac source is Rrect/n

I Outputs can be added in
series to achieve voltage gain

I Elimination or reduction of
matching network

I LR of each rectifier can be
combined into a single
inductor of value LR/n

I Overall efficiency is equal to
efficiency of each individual
stage
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High voltages at 10’s of MHz

Resonant

rectifier

Resonant

rectifier

Resonant

rectifier

VHV

+

-

+

−
Dc/RFVdc

I Capacitive isolation
feasible at 10’s of
MHz

I Cascading multiple
converters for high
voltage gain

I Also effective for
impedance matching

I Fast pulse capability
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12 Stage Design with Silicon

I 100 W 40 V to 2000 V dc-dc 27.12 MHz converter

I Silicon devices exhibit more ideal behavior allowing for
27.12 MHz operation

I 12 class-D stages for a voltage gain of 50 using a matching
network with a quality factor of 2

I A single stage design would require a Q >20
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Power Supply Performance

DC-DC Performance

I 90% conversion
efficiency

I Silicon diodes yield
95 % rectification
efficiency as
expected

I Ability to produce
very square pulses
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Pulsed electric field pasteurization

Diversified Technologies Inc. Diversified Technologies Inc. Diversified Technologies
Inc.

I High electric field ≈ 20− 50 kV/cm pulses causes rupture
bacterial membranes
I Render bacteria un-viable
I Non-thermal means to pasteurize foodstuffs
I Less energy intensive than thermal pasteurization
I Effective for pasteurization, algai oil extraction, dehydration,

wastewater treatment

I Current PEF systems are costly and limited to industrial settings

SUPER-Lab: VHF (J.R.) November 4, 2015 37 / 51 Stanford University



Experimental Setup

Electrode Design for Milk and
Water

I 2 kV/mm field strength

I Variable speed pump

I 50Ohm rectifier allows for
remote inverter location for
test purposes

Idex Health & Sciences
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Bacteria Test Results

I Tested Effectivness on E. Coli and Coliform

I 2-3 log reduction in measured bacteria levels

I Energy requirement of 0.5wh/L
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40% of milk in some emerging markets spoils

I Small farmers can’t afford current pastuerizing equipment

I Communities rely on a network of aggregators and milk
collectors to process and distribute milk

I Weather, road conditions etc., can risk milk delivery

Photo credit: Nestle, Sri Lanka & Varick Schwartz, Kiva Fellow serving in Nairobi, Kenya
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2 kW 13.56 MHz 275 V to 2 kV output isolated dc-dc

I 2× Φ2 inverters using GaN Systems 650 V MOSFETs

I 4x500 W rectifiers with 500 V outputs in series

I 94% inverter efficiency

I 4 µs transient response

I 250 W/in3 including gate drive and cold plate

I 90% rectifier efficiency vs. 97% predicted by simulation model
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HV supplies for satellite applications

I Stanford’s 2 kW, 2 kV 13,56 MHz converter
I ≈ 200 W/in3

I 5 kW/kg
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Applications: Satellite propulsion

Plasma
Discharge
Modes

Capacitive

Inductive

Helicon

I Miniaturized plasma sources have enormous
potential for satellite propulsion

I Ion drives (RFIT, Hall Thrusters) use large PPUs

I We are collaborating with Prof. Mark Capelli to
make a miniature helicon thruster for cubesats

SUPER-Lab: VHF (J.R.) November 4, 2015 43 / 51 Stanford University



Miniature Helicon Thruster

Parameter Value

Ion mean velocity: 52 km/s
Ionization fraction: 27%
Mass flow rate: 13.4 µg/s

I Preliminary measurements
are very promising

I It fits in a cubesat!

David Biggs, Sam Avery, Luke Raymond, Wei Liang, Nicolas Gascon,
Juan Rivas-Davila, Mark Cappelli, “A Compact Helicon Thruster for
Small Satellites” 2015 Interplanetary Small Satellite Conference, Santa
Clara CA.
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Plasma Medicine

Max Planck Institute

Max Planck Institute

Max Planck Institute

I Plasma is effective for wound
treatment and biofilm control

I Effective against MRSA and
other anti-biotic resistant
pathogens

I Current plasma systems are large
and costly
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VHF Power enables miniature plasma sources

I Miniaturized plasma
generator for bio-film control

I Prototype battery operated &
switching at 13.56 MHz
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Portable plasma source

In Collaboration with Prof. Alex Rickard (UofM)

I Preliminary testing shows substantial bacterial reduction even
with short pulses
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Nanosecond Repetitively Pulsed (NRP) Plasma

I NRP plasmas can kill biofilm and wound treatment
I Validated in vitro and in vivo
I Significant reduction in healing time
I Effective on S. aureus, MRSA

I HF converters can reduce the size of the supply coupled to PFN
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27.12 MHz GaN Bi-directional Resonant Power Converter
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I 27.12 MHz 420 W Bidirectional dc-dc converter

I Vin = 170 V, Vout = 50 V, η ≈ 81%, power density ≈ 120 W/in3
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Wireless power transfer at 13.56 MHz

I η=86.6 %, PIN=950 W, POUT=823 W
at VIN=200 V and distance=270 mm
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