Piezoelectric energy harvesting technology and its power conditioning designs

Dr. Junrui Liang Dec. 8, 2015 @ University of California, Berkeley

Mechatronics and Energy TransformAtion Laboratory 机电与能量转换实验室

Shanghai & ShanghaiTech University

(Figures are from internet)

Highlights & statistics

- Kickoff: 2012 (official approval in Apr. & construction start in Dec.)
- Mission and goal: A small-scale research university
- Sponsors: Shanghai Government & Chinese Academy of Sciences
- Academic system: Internationally peer-reviewed tenure-track system
- Faculties: School of Information Science and Technology School of Physical Science and Technology School of Life Science and Technology School of Entrepreneurship and Management no departments, committed to interdisciplinary research
- Graduate students: 1082 from 2013
- Undergraduate students: 509 from 2014
- Faculty members: full-time 66; adjunct 270

Shanghai Synchrotron

Shanghai Advanced Research Institute National Center for Protein Science Shanghai

New Drug Platform

ShanghaiTech University

Campus Overview

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) Practical implementations
 - d) Going beyond by active intervention

METAL

INTRODUCTION

What happens when battery runs out?

Ambient energy harvesting

Power scale

Energy Source	Challenge	Typical Electrical Impedance	Typical Voltage	Typical Power Output
Light	Conform to small surface area; wide input voltage range	Varies with light input Low kΩ to 10s of kΩ	DC: 0.5V to 5V [Depends on number of cells in array]	10μW-15mW (Outdoors: 0.15mW-15mW) (Indoors: <500μW)
Vibrational	Variability of vibrational frequency	Constant impedance 10s of kΩ to 100kΩ	AC: 10s of volts	1µW-20mW
Thermal	Small thermal gradients; efficient heat sinking	Constant impedance 1Ω to 100s of Ω	DC: 10s of mV to 10V	0.5mW-10mW (20°C gradient)
RF & Inductive	Coupling & rectification	Constant impedance Low kΩs	AC: Varies with distance and power 0.5V to 5V	Wide range

Definition of energy harvesting

- The process by which energy readily available from the environment is captured and converted into usable electrical energy
- Frequently refers to small autonomous devices, such as wireless sensor networks and wearable electronics
- Ideal for substituting for batteries that are impractical, costly, or dangerous to replace

I Market prediction

Global market for energy harvesting devices for small electronic and electrical equipment

Performance of the favorite energy harvesting technologies

(Figures are from internet)

Kinetic energy harvesting using piezo-

Energy harvesting shoes (MIT Media Lab)

Harvesting floor (Sound Power Co., Japan)

Piezoelectric transducer

- Piezoelectric device
- Mass Shunt Ciruit Damper Piezoelectric Element Piezoelectric transducer Electrical Kinetic Strain (potential) energy energy energy (Animation from Wikipedia) 13
- Direct piezoelectric effect

Piezoelectricity in our daily life

(Figures are from internet)

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) Practical implementations
 - d) Going beyond by active intervention

PEH: an interdisciplinary research

What is an energy harvesting system?

 Mechanical engineer's answer

(Erturk and Inman, 2009)

(Williams and Yates, 1996) (Roundy et al, 2003)

 Electrical engineer's answer

(Ottman et al., 2002)

(LTC3588-2 Datasheet, Linear Technology)

Studies emphasizing mechanical aspect

• Parameter distributed model (Erturk and Inman, 2009) Citation = 456 (as of Nov. 2015)

• Nonlinear structure (Stanton et al., 2010) Citation = 313 (as of Nov. 2015)

Studies emphasizing electrical aspect

• MPPT circuit (Ottman et al., 2002) Citation = 886 (as of Nov. 2015)

Switching interface circuit for power boosting

(Guyomar et al., 2005) Citation = 548 (as of Nov. 2015)

Studies emphasizing material aspect

• Piezoelectric ZnO Nanogenerators (Wang et al., 2006) Citation = 3574

(as of Nov. 2015)

Study methodologies

Study methodologies

viodel

Study methodologies

Study methodologies

Recent researches

Energy harvesting from gust (wind) (Wang and Inman, 2012)

Energy harvesting from raindrop (Wong et al., 2015)

Energy harvesting from acoustic wave (Li and You, 2015) 25

III.B A lazy solution

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) Practical implementations
 - d) Going beyond by active intervention

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) Practical implementations
 - d) Going beyond by active intervention

III.A Why we need power conditioning?

• Piezoelectric generator

$$i_{eq} = \alpha \dot{x}$$

 Standard energy harvesting circuit

 Typical waveforms with bridge rectifier

III.A Possible to do compensation?

CIRCUIT PRINCIPLE

III.A Synchronized switch damping

III.A SSD on inductor

III.A RLC step response for voltage inversion

For underdamped RLC circuit, where $\zeta \ll 1$:

- Peak time: $\boldsymbol{\tau} = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}} \approx \pi \sqrt{LC}$
- Overshoot ratio (inversion factor): $\gamma = -e^{-\zeta \pi/\sqrt{1-\zeta^2}} \approx -e^{-\pi/(2Q)}$

III.A Synchronized switch harvesting

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) Practical implementations
 - d) Going beyond by active intervention

PEH RESEARCH

III.B Unsolved problem obout simplification

III.B Boundary for the scientific problem

III.B Extensively referred conceptual model

 $\frac{m\zeta_e\omega_n\omega^2\left(\frac{\omega}{\omega_n}\right)^3Y^2}{\left[2(\zeta_e+\zeta_m)\frac{\omega}{\omega_n}\right]^2+\left[1-\left(\frac{\omega}{\omega_n}\right)^2\right]^2}$ P = at resonance $\frac{\omega}{\omega_n} = 1$ $P = \frac{m\zeta_e \omega^3 Y^2}{4(\zeta_e + \zeta_m)^2}$

III.B Harvester behaves like a damper?

Key questions: the dynamic behaviors of

- 1. Mechanical structure
- 2. Piezoelectric element
- 3. Power conditioning circuit

III.B Material to device model

T (stress)

S (strain)

relations

Direction of f_p , x_p

Assuming uniform distribution

Material level constitutive equations \bullet (IEEE Standard, 1988)

$$\begin{bmatrix} T_p \\ D_i \end{bmatrix} = \begin{bmatrix} c_{pq}^E & -e_{kp} \\ e_{iq} & \varepsilon_{ik}^S \end{bmatrix} \begin{bmatrix} S_q \\ E_k \end{bmatrix} \qquad \begin{bmatrix} S_p \\ D_i \end{bmatrix} = \begin{bmatrix} s_{pq}^E & d_{kp} \\ d_{iq} & \varepsilon_{ik}^T \end{bmatrix} \begin{bmatrix} T_q \\ E_k \end{bmatrix}$$
$$\begin{bmatrix} S_p \\ B_i \end{bmatrix} = \begin{bmatrix} s_{pq}^D & g_{kp} \\ -g_{iq} & \beta_{ik}^T \end{bmatrix} \begin{bmatrix} T_q \\ D_k \end{bmatrix} \qquad \begin{bmatrix} T_p \\ E_i \end{bmatrix} = \begin{bmatrix} c_{pq}^D & -h_{kp} \\ -h_{iq} & \beta_{ik}^S \end{bmatrix} \begin{bmatrix} S_q \\ D_k \end{bmatrix}$$

$$g_{kp} \left[\begin{array}{c} T_q \end{array} \right] \left[\begin{array}{c} T_p \end{array} \right] = \left[\begin{array}{c} c_{pq}^D & -h_{kp} \end{array} \right] \left[\begin{array}{c} S_q \end{array} \right]$$

E (elec. field) D (elec. displacement) Geometric

Equations at device level

 $\begin{vmatrix} F_p \\ I_- \end{vmatrix} = \begin{vmatrix} K^E/s & \alpha_e \\ \alpha_{\varphi} & -sC^S \end{vmatrix} \begin{vmatrix} \dot{X}_p \\ V_p \end{vmatrix} \qquad t \quad \frac{\downarrow}{\Lambda}$

III.B Device to system model

III.B Electromechanical analogy

(obtained with electromechanical analogy) (α_e : force-voltage factor)

III.B Mech. part equivalent impedance

Equivalent lumped model

(Van Dyke's model)

(IEEE Standard, 1988)

Measured and fitted results

III.B Elec. part equivalent impedance

III.B Work cycle analysis

 Energy loss in one vibration cycle ∝ area enclosed by the *q* − *v* locus

$$\Delta E = \int_{\phi} v \, \mathrm{d}q = \int_{\phi} v i \, \mathrm{d}t$$

T/2

Time

 $\theta | \omega$

0

 $Z_{elec, SEH}(j\omega) = \frac{V_{p,F}(j\omega)}{I(i\omega)} = \frac{1}{\pi\omega C} \left[\sin^2\theta + j(\sin\theta\cos\theta - \theta)\right]$

STRUCTURAL EFFECT **III.B** Harmonic modeling Assumption - influence of higher-order harmonics Aoltage and current (a.u.) << that of the fundamental - Vrect component $i_{eq}(t) = I_0 \sin(\omega t)$ $v_{p,F}(t) = \frac{I_0}{2\pi\omega C_p} \left\{ \left[\sin(2\theta) - 2\theta \right] \cos(\omega t) \right\}$ Vrec vp

 i_{ea} is sinusoidal and orthogonal to all high-order harmonics of v_p

 $+2\sin^2\theta\sin(\omega t)$

$$P_{elec} = \frac{1}{T} \int_0^T v_p(t) i_{eq}(t) dt = \frac{1}{T} \int_0^T v_{p,F}(t) i_{eq}(t) dt$$

Т

III.B Equivalent Z_{elec} of different circuits

III.B Energy flow

(Liang and Liao, Smart Materials and Structures, 2011)

III.B Decomposition of *Z*_{elec}

III.B Resistive load and SEH

Resistive AC load

(Lesieutre et al. 2004, Liang and Liao, 2009)

• Standard EH interface

Real rectified circuits cannot be simply equalized by a resistive ac load

Parallel SSHI

- Energy cycle

• Series SSHI

$R_d \& R_h$ III.B $R_d = \frac{4}{\pi \omega C_r} \widetilde{V}_F \left(1 - \widetilde{V}_{rect} \right) \quad \bigstar$ Rectifier SEH dissipation $R_{h} = \frac{4}{\pi\omega C} \left(\widetilde{V}_{rect} - \widetilde{V}_{F} \right) \left(1 - \widetilde{V}_{rect} \right)$ $R_{d} = \frac{1}{\pi\omega C_{n}} \left\{ 2\tilde{V}_{F} \left[2 - \tilde{V}_{rect} \left(1 + \gamma \right) \right] + \tilde{V}_{rect}^{2} \left(1 - \gamma^{2} \right) \right\}$ P-SSHI $R_{h} = \frac{2}{\pi \omega C} \left(\widetilde{V}_{rect} - \widetilde{V}_{F} \right) \left[2 - \widetilde{V}_{rect} \left(1 + \gamma \right) \right]$ Rectifier dissipation

S-SSHI

STRUCTURAL EFFECT

III.B Equivalent impedance network

III.B Experimental setup

- Two features
 - EM velocity sensor (power-supply-free sensing, zero crossing detection)
 - Micro-controller unit (provide accesses to more peripheral devices)
- Other parameters

Parameter	α_e		f_0	C_p	C_{rect}	L_i	SW	Rectifier
Value	4.75*10 ⁻⁴ N/V		42.76 Hz	34.8 nF	10 µF	47 mH	MOSFET (IRL510)	DB104 ($V_F = 1.0$ V)
Parameter	γ	L	С	R				
Value	- 0.7	31 kH	448 pF	1 MΩ				54

III.B Results

• Under 42 Hz constant acceleration base excitation

III.B PEH model with power conditioning

III.B Proposed integrated analysis

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) **Practical implementations**
 - d) Going beyond by active intervention

III.C Commercialized IC for PEH

100mA Piezoelectric Energy Harvesting Power Supply

TIME (s)

III.C Need for further research?

Conventional impedance matching

Maximum output power when

 $Z_{load} = Z_{source}^*$

Equivalent impedance in this experiment

III.C Implementation of SSHI

- Building blocks
 - Displacement (velocity) sensing
 - Synchronization
 - Switching

Early implementation

In the last experiment

III.C Self-powered designs in METAL

• Electronic design

(Liang and Liao, IEEE Trans. Industrial Electronics, 2012)

Mechatronic design

(Liu et al., Applied Physics Letters, 2015)

ME

IMPLEMENTATIONS

III.C Electronic self-powered solutions

BJT based •

(Liang and Liao, 2012)

CMOS based

(Krihely and Ben-Yaakov, 2011)

III.C Our achievements

- Modified circuit
 - Direct peak detection
 - Better isolation among functional units
 - Less dissipative components
- Improved analysis
 - Discuss some underestimated details in self-powered SSHI

III.C The self-powered SSHI circuit

III.B Working Principle (1)

Charging

 $A \rightarrow B$: forward charging C_p , $C_1 \& C_2$

III.B Working Principle (2)

First inversion

B₁ → B₂: quick inversion of the voltages across C_p , C_1 with the LCR loop

III.B Working Principle (3)

Second inversion

 $B_2 \rightarrow B_3$: second inversion until the parasitic capacitance of T_4 is charged

III.B Working Principle (4)

Charge neutralization

 $B_3 \rightarrow B_4$: charge neutralization between C_p and C_2

Piezoelectric

equivalence

III.B Working Principle (5)

Reverse charging (starts another half cycle) \mathcal{V}_p $\leq \frac{\hat{R}_1}{200k\Omega}$ $R_{200k\Omega}$ $\ddagger D_5$ ΔD_6 D_2 D_3 D_4 N4004 T3 TIP31C T_4 T_2 TIP32C TIP31C TIP32C Crect ieg D_7 D_8 \mathcal{V}_{C1} \mathcal{V}_{C2} 33,741 **DB104 DB104** C_2 C_1 680pF 680pF \boldsymbol{L} 100mH

 $B \rightarrow A$: reverse charging C_p , $C_1 \& C_2$

MARLEMENTATIONS

III.C Improved analysis

- In previous analysis (Lallart and Guyomar, 2008)
 - Underestimation on the mutual interaction between different blocks and the two self-powered switches
- In our improved analysis (Liang and Liao, 2012)
 - More detailed and quantitative analysis on
 - Open circuit voltage
 - Switching phase lag
 - Voltage inversion factor

IMPLEMENTATIONS

73

MAPLEMENTATIONS

III.C A mechatronic self-powered SSHI

2DOF linear model

Equations of motion

$$\ddot{z}_{r1} + 2\omega_1\zeta_1\dot{z}_{r1} + \omega_1^2 z_{r1} - \tilde{m}[2\omega_2\zeta_2\dot{z}_{r2} + \omega_2^2 z_{r2}] = -\ddot{z}_0,$$

$$\ddot{z}_{r2} + 2\omega_2\zeta_2\dot{z}_{r2} + \omega_2^2 z_{r2} = -\ddot{z}_1.$$

Displacement ratio

$$\frac{Z_{r2}}{Z_{r1}} = \frac{2\omega_1\zeta_1 s + \omega_1^2}{\left(s^2 + 2\omega_2\zeta_2 s + \omega_2^2\right) + \tilde{m}\left(2\omega_2\zeta_2 s + \omega_2^2\right)}$$

IMPLEMENTATIONS

III.C Design rules

Complete expression of displacement ratio

$$\frac{Z_{r2}}{Z_{r1}} = \frac{2\omega_1\zeta_1 s + \omega_1^2}{\left(s^2 + 2\omega_2\zeta_2 s + \omega_2^2\right) + \tilde{m}\left(2\omega_2\zeta_2 s + \omega_2^2\right)}$$

• Five design rules

Auxiliary
vibrator
$$\tilde{\omega} = \omega_2 / \omega_1 \ll 1$$
 \longrightarrow 1. soft or even free connection $\tilde{m} = m_2 / m_1 \ll 1$ \longrightarrow 2. relative small moving mass $\zeta_2 \ll 1$ \longrightarrow 3. low mechanical lossMain
cantilever $\omega = \omega_1$
 $\zeta_1 \ll 1$ \longrightarrow 4. operate under first vibration mode5. low mechanical loss

• Approximate displacement ratio

$$\frac{Z_{r2}}{Z_{r1}} = -1$$

IMPLEMENTATIONS

III.C Conceptual displacement waveforms

Time (arbitrary unit)

IMPLEMENTATIONS

III.C Experimental setup and results

Outline

- I. Piezoelectric energy harvesting
- II. PEH research, state of the arts
- III. Power conditioning for PEH systems
 - a) Principle, from circuit point of view
 - b) Structural effect
 - c) Practical implementations
 - d) Going beyond by active intervention

III.D Passive bias-flip circuits

III.D Active intervention for more power return

III.D Passive (receptive) & active strengths

III.D Possible for further improvement?

III.D Misleading by conventional model

83

III.D Liang & Liao's model

$$E_{h,net} = E_{extract} - E_{dissipate}$$

III.D Objective identification

From conventional concept:

PEH optimization = **∧** enclosed area (∝ damping effect)

i.e., achieving an electrical damping high enough to obtain the desired levels of power output (Millier et al., 2012)

From Liang & Liao's concept:

PEH optimization

- = ∧ green area
 - (\propto harvesting energy)
- = ↗ enclosed & ∠ blue

i.e., maximizing electrically induced damping at low dissipative cost

METAL

ACTIVE INTERVENTION

III.D "Contradiction" in voltage bias-flip

Energy cycle in single supply pre-biasing (SSPB)

Assuming kinematic condition (constant displacement excitation) a) more extracted energy requires larger voltage change before

and after voltage fipping state

 b) less dissipated energy requires
 smaller voltage change before and after each bias-flip action

make a large voltage change by combining **multiple** small steps

III.D Generalized sync. multi. bias-flips

Harvested energy in one cycle (green) $E_{h} = 2 \left| \sum_{m=1}^{M} (1 - \gamma) U_{m} V_{b,m} + 2(2 - \Delta U) V_{0} \right|$ Relation in the voltage relay Series case: $\Delta U \equiv 2$; Parallel case: $\Delta U \in (0,2)$ Optimal voltage set

$$U_{m,opt} = \frac{1}{1+\gamma}, \quad m = 1, 2, 3, ..., M$$

 $\Delta U_{opt} = 1$

(Liang and Chung 2013)

III.D Energy cycles in SMBF

ACTWEINTERVENTION

III.D Energy harvesting capability

- A general model for bias-flip solutions
- $E_h \rightarrow \infty$ by two means:
 - Decreasing γ

 (known, but
 has practical
 limit)
 - Increasing M

III.D Design considerations

- a) Making a compromise between the effectiveness of improvement and the complexity of implementation
- b) Making the full use of a auxiliary bias source
- Desiring passive and selfadaptive auxiliary bias source
- d) Regulating the current direction in each bias-flip

III.D Voltages in optimal SMBF

- Same voltage changes ∆V_p in all bias-flip actions
- Opt. P-SMBF
 - Symmetric bias sources
 - No energy gain (loss) in the auxiliary bias sources $\Delta E = \Delta V_p C_p V_b$

III.D The new P-S3BF interface circuit

Main circuit

• Driving circuits

III.D Phases 1 (open circ.) & 2 (const. volt.)

93

III.D Phases 3 (1st BF) & 4 (2nd BF)

(i)

(d)

94

(n)

III.D Self-adaptive bias voltage source

III.D Experimental results

- Future work
 - Theoretical analysis outside the optimized condition
 - Impedance modeling for the joint electromechanical dynamics

Summary

- For better understanding of PEH systems
 - Structure effect
 - Energy flow
 - Equivalent Impedance model
- For implementation of SSHI
 - Electronic design
 - Mechatronic design
- For future development
 - General model for bias-flip circuits
 - A more capable P-S3BF power conditioning circuit

PEH: an interdisciplinary research

Transducer comparison

	Piezoelectric	Electromagnetic
Electrical characteristics	C_p $i_{eq} = \alpha_e \dot{x}$	$ \underbrace{\nu_{eq}=\beta\dot{x}} $
Mechanical feature	Compact configuration, popular for MEMS	Complex configuration, need coil and magnet
	Deformation based, require a main structure	Velocity based, can be free of mechanical contact
	Works well for low frequency vibration	Works better under high frequency vibration
Electrical feature	High capacitive output impedance	Low inductive output impedance
	High voltage, low current output	Low voltage, high current output
	Relative simple for basic power conditioning	Usually require voltage multiplier

Challenges and also opportunities

Acknowledgments

- Prof. Wei-Hsin Liao and members at Smart Materials and Structures Laboratory, The Chinese University of Hong Kong, China
- Prof. Henry S.-H. Chung and members at Centre for Power Electronics, City University of Hong Kong, China
- Lab members at Mechatronics and Energy Transformation Laboratory (METAL), ShanghaiTech University, China

Initial group members (photo taken at Sept. 2014)

Acknowledgments

Supported by the grants from

- National Natural Science Foundation of China (Project No. 61401277)
- ShanghaiTech University Shanghai, China (Project No. F-0203-13-003)

Thank you!

Mechatronics and Energy TransformAtion Laboratory 机电与能量转换实验室

