

Monolithic High Frequency GaN Switched-Mode Power Converters

Dragan Maksimovic maksimov@colorado.edu Colorado Power Electronics Center (CoPEC) ECEE Department, University of Colorado - Boulder

IEEE PELS Chapter meeting, UC Berkeley, February 1, 2016

- CoPEC: Colorado Power Electronics Center
- Introduction to wide bandgap semiconductors
- Monolithic VHF GaN converters
 - Application of interest: drain supply modulation for RFPA's
 - Half-bridge power stage with integrated gate drivers in GaN process
 - Experimental results: 10-400 MHz switching, up to 50V, >10W power
- Conclusions

Colorado Power Electronics Center (CoPEC) CoPEC

CoPEC faculty:

Prof. Bob Erickson in smart power electronics for energy efficiency and Prof. Dragan Maksimovic Prof. Khurram Afridi Prof. Hanh-Phuc Le (PMIC's) Prof. Zoya Popovic (RF/Microwaves Lab) Dr. David Jones (Post-Doc Research Associate)

From digital power control for components and systems...

...to custom power management ICs ...

renewable energy applications and systems

Research and education programs

... to energy harvesting and wireless power transfer ...

...energy efficient lighting systems, renewable energy systems, and automotive (EV) applications

Research projects:

- Sponsored by industry via CoPEC membership
- Sponsored by industry and agencies as separately directed contract projects

CoPEC Educational Program

Comprehensive power electronics curriculum

- Introduction to power electronics
- Resonant and soft-switching techniques
- Modeling and control of power electronics
- Power electronics and photovoltaic systems lab
- Power electronics for electric drive vehicles
- Adjustable speed ac drives
- Analog and mixed-signal integrated circuit design

Graduate certificates in (1) PE and (2) EV Technologies

Courses can be taken online through

beboulderanywhere.colorado.edu

Specialization in power electronics available through Coursera

www.coursera.org/specializations/power-electronics

CoPEC Research Directions

- Research projects sponsored by industry through CoPEC, and by various agencies
- Collaborations with National Renewable Energy Laboratory

Introduction to wide bandgap semiconductors

Switch on-resistance R_{on} as a function of breakdown voltage V_B

$$R_{on} = k \frac{V_B^2}{A} \frac{1}{\mu_n \varepsilon_s E_c^3}$$

A = device area

 V_B = device breakdown voltage

 E_c = critical electric field for avalanche breakdown

 μ_n = electron mobility

 ε_s = semiconductor permittivity

$$\frac{AR_{on}}{V_B^2} = \frac{R_{on,sp}}{V_B^2} = \frac{k}{\mu_n \varepsilon_s E_c^3} =$$

Semiconductor material figure of merit (FOM) for majority-carrier devices (e.g. MOSFETs)

Comparison of semiconductor materials

Material	Bandgap [eV]	Electron mobility $\mu_n [\text{cm}^2/\text{Vs}]$	Critical field <i>E_c</i> [V/cm]	Thermal conductivity [W/ mºK]
Si	1.12	1400	3 x 10 ⁵	130
SiC	2.36-3.25	300-900	1.3-3.2 x 10 ⁶	700
GaN	3.44	900 1500-2000 (AlGaN/GaN)	3.0-3.5 x 10 ⁶	110

Advantages of wide bandgap (SiC, GaN) power semiconductors

- Much better FOM, reduced resistive voltage drops at higher breakdown voltages
- Much reduced stored charge (MOSFET), much reduced reverse-recovery related switching losses (high-voltage Schottky diodes)
- Capability of operation at increased junction temperature

Power electronics applications

()

Increased switching frequency: motivation

Application examples from our recent projects

Application: RF transmitters

Problem: low efficiency of conventional RF transmitters in mobile, base station, and other wireless infrastructure systems

- High peak-to-average ratio (PAR) signals
- Continuous-wave (CW) or low-PAR signals at average power levels below peak

Objective: high-efficiency, flexible RF transmitters

One possible system efficiency improvement approach: "envelope tracking" transmitters based on drain supply modulation

- High-efficiency RFPA
- High-efficiency, wide-bandwidth envelope-tracking drain supply modulator
- System co-design and integration

Objective: high-efficiency, flexible RF transmitters

One possible system efficiency improvement approach: "envelope tracking" transmitters based on drain supply modulation

- High-efficiency RFPA
- <u>High-efficiency</u>, wide-bandwidth envelope-tracking drain supply modulator
- System co-design and integration

Drain supply modulator design challenges

- Wide tracking bandwidth $[BW_{tracking} = 10$'s to 100's of MHz]
- High output voltage slew rate $[dv_{dd}/dt = \text{several V/ns}]$
- High efficiency to realize system-level efficiency improvements

Basic approach: PWM buck dc-dc converter

Challenge: high-efficiency at high switching frequency

Approach: monolithic VHF GaN switchers

Switched-mode converter design techniques in GaN process

- Gate-drive integration
 - Enables efficient PWM of high-bridge power stage at VHF
 - Enables logic-level inputs to monolithic GaN switcher chip
- Zero-voltage switching
 - Reduces switching losses
- Multi-phase conversion
 - Improves tracking bandwidth to switching frequency ratio
 - Enables power scaling
 - Reduces ripple

GaN-on-SiC process: switch FOM = $R_{on,s}Q_{g,s}$

Superior figure of merit allows switched-mode converter circuit design techniques leading to high efficiencies at very high switching frequencies

Integrated converter circuits tested at 10-400 MHz switching frequencies, up to 20V in the 0.15 μ RF process, and up to 50V in the 0.25 μ Switch process

NMOS-only process: circuit design challenges

10-400 MHz Integrated GaN PWM Buck Converters

<u>Key circuit innovation:</u> level-shifting high-side gate driver in GaN-on-SiC process to support very high frequency PWM control

- Active pull-up driver
- Bootstrap drive
- Modified active pull-up driver

Active pull-up driver

Chip layout: $2.4 \times 2.3 \text{ mm}$

Half-bridge power stage $Q_{HS}/D_{HS}, Q_{LS}/D_{LS}$

High-side gate driver Q_1, R_1, Q_2

Low-side gate driver Q_3, R_2, Q_4

Gy

Active pull-up driver operation

Bootstrap driver

Chip layout: $2.4 \times 2.3 \text{ mm}$

Half-bridge power stage $Q_{HS}/D_{HS}, Q_{LS}/D_{LS}$

High-side gate driver Q_1, R_1, Q_2, D_1, C_1

Low-side gate driver Q_3, R_2, Q_4

رمعا

Bootstrap driver operation

 $P_{d,conduction} = -DV_{ssLS}I_{Q3} + (1-D)(-V_{ssHS})I_{Q1}$ LOW

Low driver power loss, but a bootstrap capacitor is required (large chip area, or external)

ЬĻ

10

12

Modified active pull-up driver

Chip layout: $2.4 \times 2.3 \text{ mm}$

Half-bridge power stage $Q_{HS}/D_{HS}, Q_{LS}/D_{LS}$

Half-side gate driver Q_1, R_1, Q_2 Low-side gate driver Q_3, R_2, Q_4

۶Ą

Modified active pull-up driver operation

Low driver power loss, and no bootstrap capacitor required

Zero-voltage-switching (ZVS) operation

- $L-C_{sw}$ resonant ZVS transitions
- Much reduced switching losses
- Dynamically adjusted deadtimes t_{d1} , t_{d2} , with around 100ps resolution

- 10-400 MHz PWM switching, mostly ZVS operation
- Control: Altera Stratix IV FPGA, 125 ps resolution
- Chips packaged in: 20-pin 4x4mm QFN package
- Filter components
 - Low-ESR capacitors (ATC)
 - High-Q air-core inductors (Coilcraft), 10-400 nH
- Simple 4-layer PCB

Experimental results: 100 MHz switching

Monolithic GaN switchers: efficiency versus sw. frequency

S,

Monolithic GaN switchers: efficiency versus sw. frequency

9

Application: envelope tracking supply for RFPAs

- Target signal: 20 MHz bandwidth LTE envelope
- 4th order filter, 25 MHz cut-off frequency
- 100 MHz switching frequency

L_1	<i>C</i> ₂	L_3	C_4	R_L	V _{in}	P out,pk
28 nH	820 pF	307 nH	270 pF	30 Ω	20 V	10 W

9

- 20 MHz LTE envelope, 100 MHz switching frequency
- Power stage efficiency: 83.7%
- Total efficiency: 80.1% (including on-chip driver loss)
- Normalized RMS error: 5.4%

Integrated two-phase GaN buck converter chip

2.6 x 2.7 mm

Gy

0.25µ GaN-on-SiC switch process

20-pin QFN package

Air-core inductors

Two-phase switching drain supply modulator

FOURTH-ORDER FILTER DESIGNS FOR TWO PHASE CONVERTERS.

Gy

J.4 X J.0 IIIII WIWIN

Switching frequency, f_s [MHz]	20	50	100	200	400	100
Input voltage [V]	25	25	25	25	20	45
Maximum output power [W]	16.0	10.1	7.1	3.4	5.0	6.0
Peak power stage efficiency [%]	95.0	94.2	93.2	86.5	72.5	91.7
Peak total efficiency [%]	92.5	91.7	89.2	82.0	67.0	90.2
Inductance (L) [nH]	160	90	47	22	12.5	90
Duty cycle (D) [%]	75	75	75	75	50	50

(b)

A.Sepahvand, Y.Zhang, D.Maksimovic, "High Efficiency 20-400 MHz PWM Converters using Air-Core Inductors and Monolithic Power Stages in a Normally-Off GaN Process," IEEE APEC 2016

Scaling to higher power levels

- 4-phase envelope tracker using EPC GaN fets
- Bootstrap driver with GaN fet synchronous bootstrap diode
- 25 MHz per-phase switching frequency
- 20 MHz tracking bandwidth for LTE signals
- 92.3% average efficiency at 67 W average output power

Y.Zhang, J.Strydom*, M.Rooij*, D.Maksimovic, "Envelope Tracking GaN Power Supply for 4G Cell Phone Base Stations," IEEE APEC 2016. *EPC

- Wide bandgap semiconductor technologies open new opportunities in power electronics, but benefits of brute-force replacements of Si devices are limited
- Opportunities for innovations in power electronics
 - Converter circuit topologies and architectures
 - Magnetics
 - Soft switching
 - Control
 - Integration
 - Packaging
 - System architectures and system design

Selected references: VHF GaN converters

- [1] J. Hoversten, S. Schafer, M. Roberg, M. Norris, D. Maksimovic, Z. Popovic, "Co-design of PA, Supply and Signal Processing for Linear Supply-Modulated RF Transmitters," *IEEE Trans. Microwave Theory and Techniques, Special Issue on PAs,* pp. 210-220, April 2012.
- [2] M. Rodriguez, Y. Zhang, and D. Maksimovic, "High-frequency PWM buck converters using GaN-on-SiC HEMTs," *IEEE Trans. Power Electron.*, vol. 29, no. 5, pp. 2462–2473, 2014.
- [3] Y. Zhang, M. Rodriguez, and D. Maksimovic, "High-frequency integrated gate drivers for half-bridge GaN power stage," *in Control and Modeling for Power Electron.*, IEEE COMPEL 2014
- [4] Y. Zhang, M. Rodriguez, and D. Maksimovic, "100 MHz, 20 V, 90% efficient synchronous Buck converter with integrated gate driver," *in Proc. IEEE Energy Convers. Congr. Expo.*, 2014.
- [5] Y. Zhang, M.Rodriguez, D.Maksimovic, "Very high frequency PWM buck converters using monolithic GaN half-bridge power stages with integrated gate drivers," *IEEE Trans. Power Electron.*, 2016.
- [6] A.Sepahvand, Y.Zhang, D.Maksimovic, "High Efficiency 20-400 MHz PWM Converters using Air-Core Inductors and Monolithic Power Stages in a Normally-Off GaN Process," IEEE APEC 2016
- [7] Y.Zhang, J.Strydom*, M.Rooij*, D.Maksimovic, "Envelope Tracking GaN Power Supply for 4G Cell Phone Base Stations," IEEE APEC 2016